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Abstract: 

 

In this research paper we begin with study of family of n dimensional hyper cube graphs and establish some properties 
related to their distance, spectra, and multiplicities and associated Eigen vectors and extend to bipartite double graphs 

[11].In a more involved way since no complete characterization was available with experiential results in several inter 

connection networks on this spectra our work will add an element to existing theory. 
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      Introduction: 

An n dimensional hyper cube [24] also called n-cube is an n dimensional analogue of Square and a Cube. It is 

closed compact convex figure whose 1-skelton consists of groups of opposite parallel line segments aligned in each of 
spaces dimensions, perpendicular to each other and of same length. 

1.1) A point is a hypercube of dimension zero. If one moves this point one unit length, it will sweep out a line 

segment, which is the measure polytypic of dimension one. If one moves this line segment its length in a 
perpendicular direction from itself; it sweeps out a two-dimensional square. If one moves the square one unit length 

in the direction perpendicular to the plane it lies on, it will generate a three-dimensional cube. This can be 

generalized to any number of dimensions. For example, if one moves the cube one unit length into the fourth 

dimension, it generates a 4-dimensional measure polytopes or tesseract. 

The family of hypercube is one of the few regular polytopes that are represented in any number of dimensions. The 

dual polytopes of a hypercube is called a cross-polytypic. 

A hypercube of dimension n has 2n "sides" (a 1-dimensional line has 2 end points; a 2-dimensional square has 4 

sides or edges; a 3-dimensional cube has 6 faces; a 4-dimensional Thus 8 cells). The number of vertices (points) of a 

hypercube is 2
n
 (a cube has 2

3
 vertices, for instance). 

The number of m-dimensional hyper cubes on the boundary of an n-cube is 

     
 

 
  

 For example, the boundary of a 4-cube contains 8 cubes, 24 squares, 32 lines and 16 vertices. 

 

 

 

nQ
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A unit hyper cube is a hyper cube whose side has length 1 unit whose corners are                       

 

Points in  with each coordinate equal to 0 or 1 termed as measure polytypic. 

The correct number of edges of cube of dimension n is        for example 7-cube has     =448 edges. 

1.2) Dimension of the cube 

 1 2 3 4 5 6 

No. of 
vertices 

2 4 8 16 32 64 

No. edges 1 4 12 32 80 192 

        Here we define adjacency matrix of n cube described in a constructive way. 

 

Since  is n regular bipartite graph of  vertices characteristic vector of subsets of  vertices 

of layer corresponds to subsets of cardinality k. 

If n is odd n=2k-1,the middle two layers of with vertices forms middle cube graph M  by 

induction. 
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A projection of hypercube into 

two-dimensional image 
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As M  is bipartite double graph which is a sub graph of n-cube  induced by vertices whose binary 

representations have either k-1 or k no. of 1’s is of k-regular as shown in figures below 

The middle cube graph MQ2 is a sub graph of Q3 or is the bipartite double graph of    K3. 

 

 

 

 

 

 

We start with spectral properties of bipartite double graphs [17][18] and extend for study of Eigen values of M . 

1.3) Bipartite double graph: Let H= (V, E) be a graph of order n, with vertex set V = {1, 2…. n}. Its bipartite 

double graph = ( ) is the graph with the duplicated vertex set 

 = {1,2… n.  }and adjacencies induced from the adjacencies in H as follows: 

 

Thus, the edge set of  is  = . From the definition, it follows that  

is a bipartite graph [24.21] with stable subsets = {1, 2…. n}, and = {  }. For example, if H is a bipartite 

graph, then its bipartite double graphs  consists of two non-connected copies of H. 
 

 
Path p-4 and its bipartite Double Graph 
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Graph H has diameter 2 and  has diameter 3 

If H is a -regular graph, then also, if the degree sequence of the original graph H is  

= ( ), the degree sequence for its bipartite double graph is =( , ) 

The distance between vertices in the bipartite double graph H can be given in terms of  even and odd distances in H. 

 

 

Involutive auto Orphism without fixed edges, which interchanges vertices i and i’ , the map from  

Onto H defined   is a 2-fold covering. 

If   is extended bipartite double graph by adding edges (i ,i’) 

for each . 

 

1.4) Notations: 
 

The order of the graph G is n = {V} and its size is m = {E}. We label the vertices with the integers 1,2,…, n. If i is 

adjacent to j, that is, ij E, we write i j or i  j. The distance between two vertices is denoted by dist(i,j). We also use 
the concepts of even distance and odd distance between vertices, denoted by dist+ and dist -, respectively. They are 

defined as the length of a shortest even (respectively, odd) walk between the corresponding vertices. The set of vertices 

which are L-apart from vertex i, with respect to the usual distance, is , so that the degree of 

vertex  is simply . The eccentricity of a vertex is ecc(i)= max1j_n dist(i; j) and the diameter of 

the graph is D =D(G) graph G` has the same vertex set as G and two vertices are adjacent in G` if 

and only if they are at distance l  in G. An antipodal graph G is a connected graph of diameter D for which GD is a 

disjoint union of cliques. The folded graph of G is the graph G whose vertices are the maximal cliques. 

Let G = (V;E) be a graph with adjacency matrix A and -eigenvector v. Then, the charge of vertex i  V is the entry vi 

of v, and the equation . Eigen values of the bipartite double graph[11,16]  and the extended bipartite double 

graph  as functions of the Eigen values of a non-bipartite graph G. 

2) Theorem:  Let F be a field and let R be a commutative sub ring of , the set of all n*n 

Matrices over F. Let M  , then 

 

 

for a bipartite double graph characteristic polynomial. [13] 
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We prove the following theorems showing geometric multiplicities of Eigen value  of H  geometric multiplicities of 

Eigen values  and of  

of  

 
2.1) Theorem: Let H be a graph on n vertices, with the adjacency matrix A and characteristic  

 

 

Polynomial (x). Then, the characteristic polynomials of  and are, respectively, 

 

Adjacency matrices are, respectively, 

 

By above corollary  
 

 

Whereas, the characteristic polynomial of  is 

 

 

2.2) Theorem: Let H be a graph and v a -eigenvector H. Let us consider the vector u+ with 

Components = , u- with components and  for  

Then, 

-eigenvector  and eigenvector  

- -eigenvector  and eigenvector  

Given vertex i, , all its adjacent vertices are of type j’, with i (E)  j.  
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(x) = (-1) (x) (-x),

(x) = (-1) (x-1) (-x-1).

n

H H
H

n

H H
H


  

  

:

0 O A + I
and .

0 A + I O

A
A A

A

   
    
   

:

H


2n

2 2

n

xI -A-I
(x) = det(xI ) = det

-A-I xI

           = det(x I -(A+I ) )= det(xI  -(A+I )) det(xI + (A+I )) 

           =det((x-1)I )( 1) det( ( 1)I )

           = (-1) (x-1) (-x-1).

n n

H
n n

n n n n n n

n

n n

H H

A

A x A

  
   

 

    

 

:



'i iu u  iv
i iu v  'i iu v   1 , 'i i n 

u  H (1 ) H


u  H ( 1 )  H


1 i n  :

2 2

2n

n

xI -A
(x) = det(xI ) = det = det(x I -A )

-A xI

           = det(xI  -A) det(xI + A) = (..1) (x) (-x);

n

n
H

n

n n H H

A
 

   
 

 

:

:



Journal of Cardiovascular Disease Research 

ISSN:0975-3583,0976-2833       VOL11,ISSUE04,2020 

 

523 
 

 

Given vertex I’, , all its adjacent vertices are of type j, with i (E)  j.  

Then 

 

By a similar reasoning with , we obtain 

 and 

 

 

 Is - -eigenvector of bipartite double graph . 

Also 1+ ,-1-  are Eigen values for , Eigen vectors of  

From the above figures realizing an isomorphism [8, 2] defined by   

 

 

Is clearly directive, according to the definition of bipartite double graph, if u and  are two vertices of . 

The middle cube graph with D=2k-1 by above corollary is isomorphic to . 

We prove spectrum of   contains all Eigen values of , 

 for  

With multiplicities  

3) Conclusion: 

 

In Verification of the above results, 
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For highest degree Distance polynomials of  

 p5 (3) = p5 (1) = p5 (-1) = 1 and p5 (2) =p5 (-1) = p5 (-3) = -1. Then, 
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