E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning

Bhakgya M, Manoranjitham A.

Abstract
Diagnosis of thorax diseases is most commonly done by examining the Chest X-rays (CXR).
Computer-aided diagnosis (CAD) System assist radiologists in the interpretation of medical images.
CADimproves the quality of diagnosis and leverages the productivity of radiologists. Several Deep
Learning algorithms have been successfully implemented inorder to provide fully-automated, high
precision Computer-aided diagnosis (CAD) Systems. In this paper, a dedicated X-ray network trained
from scratch for Chest X-Ray image classification is explored. Further, transfer learning using
powerful network architecture like MobileNet, InceptionV3, VGG19 and ResNet-50 are investigated
indetail. Limited availability of annotated Chest X-ray images makes medical image classification
challenging. Transfer learning approach with andwithout fine-tuning can help overcome this issue by
transferring the knowledge gained from pre-trained networks to domain specific tasks.The
experimental study is tested onthe dataset of Chest X-Ray images, consisting of 2 categories,
Pneumonia and Normal.

Key words: Chest X-Ray, Computer-aided diagnosis, Deep Learning, Transfer Learning.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Bhakgya M
Articles by Manoranjitham A
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Bhakgya M, Manoranjitham A. Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. J Cardiovasc. Dis. Res.. 2021; 12(5): 489-495. doi: 10.31838/jcdr.2021.12.05.65


Web Style

Bhakgya M, Manoranjitham A. Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. http://www.jcdronline.org/?mno=113955 [Access: August 22, 2021]. doi: 10.31838/jcdr.2021.12.05.65


AMA (American Medical Association) Style

Bhakgya M, Manoranjitham A. Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. J Cardiovasc. Dis. Res.. 2021; 12(5): 489-495. doi: 10.31838/jcdr.2021.12.05.65



Vancouver/ICMJE Style

Bhakgya M, Manoranjitham A. Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. J Cardiovasc. Dis. Res.. (2021), [cited August 22, 2021]; 12(5): 489-495. doi: 10.31838/jcdr.2021.12.05.65



Harvard Style

Bhakgya M, Manoranjitham A (2021) Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. J Cardiovasc. Dis. Res., 12 (5), 489-495. doi: 10.31838/jcdr.2021.12.05.65



Turabian Style

Bhakgya M, Manoranjitham A. 2021. Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. Journal of Cardiovascular Disease Research, 12 (5), 489-495. doi: 10.31838/jcdr.2021.12.05.65



Chicago Style

Bhakgya M, Manoranjitham A. "Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning." Journal of Cardiovascular Disease Research 12 (2021), 489-495. doi: 10.31838/jcdr.2021.12.05.65



MLA (The Modern Language Association) Style

Bhakgya M, Manoranjitham A. "Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning." Journal of Cardiovascular Disease Research 12.5 (2021), 489-495. Print. doi: 10.31838/jcdr.2021.12.05.65



APA (American Psychological Association) Style

Bhakgya M, Manoranjitham A (2021) Pneumonia Detection on Chest X-Ray Using Convolutional Neural Network and Transfer Learning. Journal of Cardiovascular Disease Research, 12 (5), 489-495. doi: 10.31838/jcdr.2021.12.05.65





Most Viewed Articles
  • Effects of right ventricular septal versus apical pacing on plasma natriuretic peptide levels
    nikoo M.H, ghaedian m. m., kafi M., fakhrpour A., Jorat M. V., Pakfetrat M., Ostovan M., Zahra Emkanjoo
    J Cardiovasc. Dis. Res.. 2011; 2(2): 104-109
    » Abstract » doi: 10.4103/0975-3583.83036

  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles