E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray

SAMPATHI CHANDRA KUMARI, Dr. D JAYA KUMARI.

Abstract
Computer-aided diagnosis (CAD) systems are considered a powerful tool forphysicians to
support identification of the novel Coronavirus Disease 2019(COVID-19) using medical imaging
modalities. Therefore, this article proposes anew framework of cascaded deep learning classifiers
to enhance the performanceof these CAD systems for highly suspected COVID-19 and
pneumonia diseases inX-ray images. Our proposed deep learning framework constitutes two
majoradvancements as follows. First, complicated multi-label classification of X-rayimages have
been simplified using a series of binary classifiers for each testedcase of the health
status

Key words: Semi-Markov Decision Process (SMDP), Reinforcement Learning(RL) Algorithm, Vehicular Cloud System, Neural-Network, Quality ofExperience (QoE), Quality of Service (QoS).


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by SAMPATHI CHANDRA KUMARI
Articles by Dr. D JAYA KUMARI
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. J Cardiovasc. Dis. Res.. 2021; 12(5): 1140-1153. doi:10.31838/jcdr.2021.12.05.147


Web Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. http://www.jcdronline.org/?mno=125249 [Access: September 17, 2021]. doi:10.31838/jcdr.2021.12.05.147


AMA (American Medical Association) Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. J Cardiovasc. Dis. Res.. 2021; 12(5): 1140-1153. doi:10.31838/jcdr.2021.12.05.147



Vancouver/ICMJE Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. J Cardiovasc. Dis. Res.. (2021), [cited September 17, 2021]; 12(5): 1140-1153. doi:10.31838/jcdr.2021.12.05.147



Harvard Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI (2021) A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. J Cardiovasc. Dis. Res., 12 (5), 1140-1153. doi:10.31838/jcdr.2021.12.05.147



Turabian Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. 2021. A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. Journal of Cardiovascular Disease Research, 12 (5), 1140-1153. doi:10.31838/jcdr.2021.12.05.147



Chicago Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. "A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray." Journal of Cardiovascular Disease Research 12 (2021), 1140-1153. doi:10.31838/jcdr.2021.12.05.147



MLA (The Modern Language Association) Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI. "A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray." Journal of Cardiovascular Disease Research 12.5 (2021), 1140-1153. Print. doi:10.31838/jcdr.2021.12.05.147



APA (American Psychological Association) Style

SAMPATHI CHANDRA KUMARI , Dr. D JAYA KUMARI (2021) A Novel Cascaded-Deep Learning Classifier for Diagnosis of Covid19 and Pneumonia Disease in Chest X-Ray. Journal of Cardiovascular Disease Research, 12 (5), 1140-1153. doi:10.31838/jcdr.2021.12.05.147





Most Viewed Articles
  • Effects of right ventricular septal versus apical pacing on plasma natriuretic peptide levels
    nikoo M.H, ghaedian m. m., kafi M., fakhrpour A., Jorat M. V., Pakfetrat M., Ostovan M., Zahra Emkanjoo
    J Cardiovasc. Dis. Res.. 2011; 2(2): 104-109
    » Abstract » doi: 10.4103/0975-3583.83036

  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • Most Cited Articles