E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


Brain Lesion Detection: An Architecture Based On Convolution Neural Network

Ullas Kumar Agrawal, Pankaj Kumar Mishra, Mohan Awasthy.

Abstract
MRI based lesion detection is an essential step for computer aided diagnosis to detect brain
lesion. There are several types of tissues, skull portion in brain MRI images, which lead to false
detection of brain lesion. To get appropriate lesion detection segmentation architecture based on
Convolution Neural Network (CNN) is proposed in the study. Here, 2450 3D RGB images are taken
from The Cancer Genome Atlas (TCGA), where 2400 images are used from 104 patients for training
purpose and 50 images are taken from six patients for testing purpose. From the test images the
architecture achieved accuracy (99.1%), dice similarity (85.4%), jaccard index (74.8%), Mathews
correlation coefficient (82.2%), sensitivity (89.7%), specificity (99.3%), and precision (82.3%) with
95% confidence interval. Besides, the receiver operating characteristic (ROC) curve also plotted with
highest 97.22% area, which proves the constancy and reliability of the architecture. The proposed CNN
based architecture detects the accurate lesion from brain MRI 3D RGB images.

Key words: The Cancer Genome Atlas, Convolution Neural Network, Brain lesion, Segmentation, Border removing, Artefacts removing.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Ullas Kumar Agrawal
Articles by Pankaj Kumar Mishra
Articles by Mohan Awasthy
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. Brain Lesion Detection: An Architecture Based On Convolution Neural Network . J Cardiovasc. Dis. Res.. 2021; 12(3): 245-254. doi:10.31838/jcdr.2021.12.03.37


Web Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. Brain Lesion Detection: An Architecture Based On Convolution Neural Network . http://www.jcdronline.org/?mno=87088 [Access: June 10, 2021]. doi:10.31838/jcdr.2021.12.03.37


AMA (American Medical Association) Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. Brain Lesion Detection: An Architecture Based On Convolution Neural Network . J Cardiovasc. Dis. Res.. 2021; 12(3): 245-254. doi:10.31838/jcdr.2021.12.03.37



Vancouver/ICMJE Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. Brain Lesion Detection: An Architecture Based On Convolution Neural Network . J Cardiovasc. Dis. Res.. (2021), [cited June 10, 2021]; 12(3): 245-254. doi:10.31838/jcdr.2021.12.03.37



Harvard Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy (2021) Brain Lesion Detection: An Architecture Based On Convolution Neural Network . J Cardiovasc. Dis. Res., 12 (3), 245-254. doi:10.31838/jcdr.2021.12.03.37



Turabian Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. 2021. Brain Lesion Detection: An Architecture Based On Convolution Neural Network . Journal of Cardiovascular Disease Research, 12 (3), 245-254. doi:10.31838/jcdr.2021.12.03.37



Chicago Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. "Brain Lesion Detection: An Architecture Based On Convolution Neural Network ." Journal of Cardiovascular Disease Research 12 (2021), 245-254. doi:10.31838/jcdr.2021.12.03.37



MLA (The Modern Language Association) Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy. "Brain Lesion Detection: An Architecture Based On Convolution Neural Network ." Journal of Cardiovascular Disease Research 12.3 (2021), 245-254. Print. doi:10.31838/jcdr.2021.12.03.37



APA (American Psychological Association) Style

Ullas Kumar Agrawal, Pankaj Kumar Mishra , Mohan Awasthy (2021) Brain Lesion Detection: An Architecture Based On Convolution Neural Network . Journal of Cardiovascular Disease Research, 12 (3), 245-254. doi:10.31838/jcdr.2021.12.03.37





Most Viewed Articles
  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Putative antioxidant property of sesame oil in an oxidative stress model of myocardial injury
    Mohamed T.S. Saleem , Madhusudhana C. Chetty , S. Kavimani
    J Cardiovasc. Dis. Res.. 2013; 4(3): 177-181
    » Abstract » doi: 10.1016/j.jcdr.2013.07.001

  • Medical and Social Characteristics and Quality of Life of Children with Urinary System Diseases (on the Example of Urinary System Infection)
    A.A. Maksimova, N.V. Savvina, N.M. Gogolev, A.I. Protopopova
    J Cardiovasc. Dis. Res.. 2020; 11(2): 194-201
    » Abstract » doi: 10.31838/jcdr.2020.11.02.33

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Investigating the Lifestyle Related to Cancer Risk Factors among People of Gonbad City in 2019
    Nasibeh Zerangian, Namamali Azadi, Mahnaz Solhi, Morteza Mansourian
    J Cardiovasc. Dis. Res.. 2020; 11(4): 91-97
    » Abstract » doi: 10.31838/jcdr.2020.11.04.16

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • Most Cited Articles