E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells

A.V. Srinath,J. Krishnan2.

Abstract
Gap junctions are important intercellular communication mechanisms in heart tissue, and their function is critical to maintaining normal cardiac electrical signals. Gap junctions allow direct electrical connectivity between cardiac myocytes with every beating, allowing for the fast and synchronized spread of cardiac excitement. Proper gap junction communication results in the relatively close start of all cardiomyocyte action potentials as well as an ordered contraction. Many types of cardiac illness cause changes in gap junction coupling. It is understood that the connexin (Cx) component of gap junctions has both direct and indirect functions in the transmission of electrical impulses from the cardiac pacemaker to functioning myocytes through the cardiac conduction system (CCS). In this work, the single cardiac cell of human Purkinjie Fibre and Ventricular Cells are modelled. The modelled cells are coupled via gap junction channels. The computational research intends to investigate the electrotonic function of gap junction conduits in the transmission of electrical impulses between heart cells. It is also studied the effect of the gap junction role between pairs of cells and extrapolate these findings at the tissue level.

Key words: Cardiac cell model, Gap junction, Human ventricle cell model, Purkinje cell


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by A.V. Srinath
Articles by J. Krishnan2
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

A.V. Srinath,J. Krishnan. Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . J Cardiovasc. Dis. Res.. 2021; 12(3): 399-409. doi:10.31838/jcdr.2021.12.03.60


Web Style

A.V. Srinath,J. Krishnan. Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . http://www.jcdronline.org/?mno=87111 [Access: June 10, 2021]. doi:10.31838/jcdr.2021.12.03.60


AMA (American Medical Association) Style

A.V. Srinath,J. Krishnan. Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . J Cardiovasc. Dis. Res.. 2021; 12(3): 399-409. doi:10.31838/jcdr.2021.12.03.60



Vancouver/ICMJE Style

A.V. Srinath,J. Krishnan. Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . J Cardiovasc. Dis. Res.. (2021), [cited June 10, 2021]; 12(3): 399-409. doi:10.31838/jcdr.2021.12.03.60



Harvard Style

A.V. Srinath,J. Krishnan (2021) Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . J Cardiovasc. Dis. Res., 12 (3), 399-409. doi:10.31838/jcdr.2021.12.03.60



Turabian Style

A.V. Srinath,J. Krishnan. 2021. Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . Journal of Cardiovascular Disease Research, 12 (3), 399-409. doi:10.31838/jcdr.2021.12.03.60



Chicago Style

A.V. Srinath,J. Krishnan. "Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells ." Journal of Cardiovascular Disease Research 12 (2021), 399-409. doi:10.31838/jcdr.2021.12.03.60



MLA (The Modern Language Association) Style

A.V. Srinath,J. Krishnan. "Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells ." Journal of Cardiovascular Disease Research 12.3 (2021), 399-409. Print. doi:10.31838/jcdr.2021.12.03.60



APA (American Psychological Association) Style

A.V. Srinath,J. Krishnan (2021) Understanding the Signal Transduction Mechanism of Gap Junctions Using Computational Approach in Cardiac Cells . Journal of Cardiovascular Disease Research, 12 (3), 399-409. doi:10.31838/jcdr.2021.12.03.60





Most Viewed Articles
  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Putative antioxidant property of sesame oil in an oxidative stress model of myocardial injury
    Mohamed T.S. Saleem , Madhusudhana C. Chetty , S. Kavimani
    J Cardiovasc. Dis. Res.. 2013; 4(3): 177-181
    » Abstract » doi: 10.1016/j.jcdr.2013.07.001

  • Medical and Social Characteristics and Quality of Life of Children with Urinary System Diseases (on the Example of Urinary System Infection)
    A.A. Maksimova, N.V. Savvina, N.M. Gogolev, A.I. Protopopova
    J Cardiovasc. Dis. Res.. 2020; 11(2): 194-201
    » Abstract » doi: 10.31838/jcdr.2020.11.02.33

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Investigating the Lifestyle Related to Cancer Risk Factors among People of Gonbad City in 2019
    Nasibeh Zerangian, Namamali Azadi, Mahnaz Solhi, Morteza Mansourian
    J Cardiovasc. Dis. Res.. 2020; 11(4): 91-97
    » Abstract » doi: 10.31838/jcdr.2020.11.04.16

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • Most Cited Articles