E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


Impact of Radiological Techniques in the Diagnosis of COVID-19

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman.

Abstract
The outbreak of 2019-nCOV around the globe at an exponential transmission rate has led to the declaration of
COVID-2019 as a Public Health Emergency of International Concern (PHEIC) by World Health Organization
(WHO). It is caused by severe acute respiratory syndrome leading to lung infection eventually to death. Lung
imaging provides insight about the extent of infection and adopt treatment accordingly even though a false positive
in standard techniques such as RT-PCR and RAD tests. Hence, this review elaborates on the origin of nCoV-2019
and various radiological techniques to identify the rate of infection. Finally, the role of artificial intelligence in
processing the lung images is outlinedalong with the combined effort by the individual, media and healthcare
organization to substantially limit the outbreak

Key words: The outbreak of 2019-nCOV around the globe at an exponential transmission rate has led to the declaration of COVID-2019 as a Public Health Emergency of International Concern (PHEIC) by World Health Organization (WHO).


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Mukesh Kuppusamy
Articles by Soubhi Zitouni
Articles by Selvakumar Subbaraman
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. Impact of Radiological Techniques in the Diagnosis of COVID-19. J Cardiovasc. Dis. Res.. 2021; 12(4): 218-226. doi:10.31838/jcdr.2021.12.04.27


Web Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. Impact of Radiological Techniques in the Diagnosis of COVID-19. http://www.jcdronline.org/?mno=91902 [Access: July 26, 2021]. doi:10.31838/jcdr.2021.12.04.27


AMA (American Medical Association) Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. Impact of Radiological Techniques in the Diagnosis of COVID-19. J Cardiovasc. Dis. Res.. 2021; 12(4): 218-226. doi:10.31838/jcdr.2021.12.04.27



Vancouver/ICMJE Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. Impact of Radiological Techniques in the Diagnosis of COVID-19. J Cardiovasc. Dis. Res.. (2021), [cited July 26, 2021]; 12(4): 218-226. doi:10.31838/jcdr.2021.12.04.27



Harvard Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman (2021) Impact of Radiological Techniques in the Diagnosis of COVID-19. J Cardiovasc. Dis. Res., 12 (4), 218-226. doi:10.31838/jcdr.2021.12.04.27



Turabian Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. 2021. Impact of Radiological Techniques in the Diagnosis of COVID-19. Journal of Cardiovascular Disease Research, 12 (4), 218-226. doi:10.31838/jcdr.2021.12.04.27



Chicago Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. "Impact of Radiological Techniques in the Diagnosis of COVID-19." Journal of Cardiovascular Disease Research 12 (2021), 218-226. doi:10.31838/jcdr.2021.12.04.27



MLA (The Modern Language Association) Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman. "Impact of Radiological Techniques in the Diagnosis of COVID-19." Journal of Cardiovascular Disease Research 12.4 (2021), 218-226. Print. doi:10.31838/jcdr.2021.12.04.27



APA (American Psychological Association) Style

Mukesh Kuppusamy, Soubhi Zitouni, Selvakumar Subbaraman (2021) Impact of Radiological Techniques in the Diagnosis of COVID-19. Journal of Cardiovascular Disease Research, 12 (4), 218-226. doi:10.31838/jcdr.2021.12.04.27





Most Viewed Articles
  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles