E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES

Ms. Asha Kulkarni, Dr. Shashidhar SM.

Abstract
In this paper we proposed a Rational-Dilation Wavelet Transform (RDWT) technique to characterize plaques recorded from high-resolution ultrasound images and develop a Computer-Aided Diagnosis (CADx) model. The image acquisition and preprocessing, feature extraction and ensemble classifiers are automated for the classification of plaque. The transition bands are constructed by using the transition function. From the sub-bands mean, standard deviation, skewness, Renyi entropy and energy these statistical features are extracted. Salp Swarm Algorithm (SSA) is used for optical features, the fundamental inspiration is the swarming behavior of slaps when navigating and foraging in oceans. K Nearest Neighbor (k-NN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) classifiers are used in the Plaque Classification these techniques are compared in the classifier comparison. Experimental results show the accuracy, specificity and sensitivity of proposed method in terms of algorithm and classifiers. The percentage of accuracy in our method is 93%, the percentage of sensitivity in our method is 90% and the percentage of specificity in our ultrasound images. A texture feature analysis and classifiers for the automated carotid method is given as 94%.

Key words: Rational-Dilation Wavelet Transform (RDWT), Computer-Aided Diagnosis (CAD), Salp Swarm Algorithm (SSA), classification


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Ms. Asha Kulkarni
Articles by Dr. Shashidhar SM
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. J Cardiovasc. Dis. Res.. 2021; 12(4): 531-543. doi:10.31838/jcdr.2021.12.04.57


Web Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. http://www.jcdronline.org/?mno=95769 [Access: July 26, 2021]. doi:10.31838/jcdr.2021.12.04.57


AMA (American Medical Association) Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. J Cardiovasc. Dis. Res.. 2021; 12(4): 531-543. doi:10.31838/jcdr.2021.12.04.57



Vancouver/ICMJE Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. J Cardiovasc. Dis. Res.. (2021), [cited July 26, 2021]; 12(4): 531-543. doi:10.31838/jcdr.2021.12.04.57



Harvard Style

Ms. Asha Kulkarni, Dr. Shashidhar SM (2021) AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. J Cardiovasc. Dis. Res., 12 (4), 531-543. doi:10.31838/jcdr.2021.12.04.57



Turabian Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. 2021. AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. Journal of Cardiovascular Disease Research, 12 (4), 531-543. doi:10.31838/jcdr.2021.12.04.57



Chicago Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. "AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES." Journal of Cardiovascular Disease Research 12 (2021), 531-543. doi:10.31838/jcdr.2021.12.04.57



MLA (The Modern Language Association) Style

Ms. Asha Kulkarni, Dr. Shashidhar SM. "AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES." Journal of Cardiovascular Disease Research 12.4 (2021), 531-543. Print. doi:10.31838/jcdr.2021.12.04.57



APA (American Psychological Association) Style

Ms. Asha Kulkarni, Dr. Shashidhar SM (2021) AUTOMATED TECHNIQUE FOR CAROTID PLAQUE CHARACTERIZATION AND CLASSIFICATION USING RDWT IN ULTRASOUND IMAGES. Journal of Cardiovascular Disease Research, 12 (4), 531-543. doi:10.31838/jcdr.2021.12.04.57





Most Viewed Articles
  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles