E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


A Review on Non-Invasive Renal Function Assessment Technologies

Raghdan Khreisha, Nizar Haddad.

Abstract
The prevalence of renal diseases is becoming a pressing problem and induces stress on global health expenditure.
Late diagnosis may lead to further complications and increases the mortality rate. The existing gold standard
techniques for renal function assessment do not support early diagnosis even though with high accuracy. Hence
researchers are focused on developing alternate technologies for early diagnosis of renal diseases. Moreover, the
invasive nature of the existing techniques hinders the public for regular monitoring. Yet the development of noninvasive
methodologies paves way for regular monitoring and proper control of diseases. This review is dedicated to
disseminate emerging non-invasive diagnostic technique for the assessment of kidney function. Initially, the causes
of the renal failure are discussed in coherence with kidney anatomy and its physiology. Next, current clinical
practice using blood, urine and biopsy tests were conferred. Finally, we provide emphasis on the non-invasive
imaging techniques and renal failure biomarkers from other sources of samples to achieve non-invasive detection

Key words: The prevalence of renal diseases is becoming a pressing problem and induces stress on global health expenditure.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Raghdan Khreisha
Articles by Nizar Haddad
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Raghdan Khreisha, Nizar Haddad. A Review on Non-Invasive Renal Function Assessment Technologies. J Cardiovasc. Dis. Res.. 2021; 12(4): 57-64. doi:10.31838/jcdr.2021.12.04.07


Web Style

Raghdan Khreisha, Nizar Haddad. A Review on Non-Invasive Renal Function Assessment Technologies. http://www.jcdronline.org/?mno=97033 [Access: July 26, 2021]. doi:10.31838/jcdr.2021.12.04.07


AMA (American Medical Association) Style

Raghdan Khreisha, Nizar Haddad. A Review on Non-Invasive Renal Function Assessment Technologies. J Cardiovasc. Dis. Res.. 2021; 12(4): 57-64. doi:10.31838/jcdr.2021.12.04.07



Vancouver/ICMJE Style

Raghdan Khreisha, Nizar Haddad. A Review on Non-Invasive Renal Function Assessment Technologies. J Cardiovasc. Dis. Res.. (2021), [cited July 26, 2021]; 12(4): 57-64. doi:10.31838/jcdr.2021.12.04.07



Harvard Style

Raghdan Khreisha, Nizar Haddad (2021) A Review on Non-Invasive Renal Function Assessment Technologies. J Cardiovasc. Dis. Res., 12 (4), 57-64. doi:10.31838/jcdr.2021.12.04.07



Turabian Style

Raghdan Khreisha, Nizar Haddad. 2021. A Review on Non-Invasive Renal Function Assessment Technologies. Journal of Cardiovascular Disease Research, 12 (4), 57-64. doi:10.31838/jcdr.2021.12.04.07



Chicago Style

Raghdan Khreisha, Nizar Haddad. "A Review on Non-Invasive Renal Function Assessment Technologies." Journal of Cardiovascular Disease Research 12 (2021), 57-64. doi:10.31838/jcdr.2021.12.04.07



MLA (The Modern Language Association) Style

Raghdan Khreisha, Nizar Haddad. "A Review on Non-Invasive Renal Function Assessment Technologies." Journal of Cardiovascular Disease Research 12.4 (2021), 57-64. Print. doi:10.31838/jcdr.2021.12.04.07



APA (American Psychological Association) Style

Raghdan Khreisha, Nizar Haddad (2021) A Review on Non-Invasive Renal Function Assessment Technologies. Journal of Cardiovascular Disease Research, 12 (4), 57-64. doi:10.31838/jcdr.2021.12.04.07





Most Viewed Articles
  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles