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Abstract

The relationship between atrial fibrillation (AF) and distortion of autonomic function is reported in the litera-
ture. We aim to evaluate sample entropy (SampEn) and heart rate variability (HRV) in patients with persistent 
AF and compare them with patients suffering from paroxysmal AF. SampEn and HRV during the presentation of 
AF were analyzed. In patients with persistent AF, there were significant increases in SampEn and increases in the 
proportion of normal-to-normal (NN) intervals more than 50 ms, NN intervals higher than 50 ms (pNN50), and 
a decrease in low-frequency power (LF) compared to patients with paroxysmal AF. The major HRV parameters 
(increased pNN50 and decreased LF) along with nonlinear data (increased standard deviation of the distances the 
dots lie from the boundary of identity and decreased detrended fluctuation analysis coefficient) provide pieces of 
evidence based on a neural mechanism underlying AF. The higher SampEn values correlate to the high fluctuation 
of HRV in persistent AF patients compared to those with paroxysmal AF. In conclusion, increased SampEn and 
high fluctuation of HRV may induce AF to become persistent. 
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Introduction

Atrial fibrillation (AF) is heart dysrhythmia due 
to irregular rhythm in the atria.1 Inhomogeneous 
electrical activity in the atrial chamber is related 
to the occurrence of irregular rhythm in the atria. 
Total irregularity and re-entrant waves are essen-
tial characteristics.2 Therefore, a chance for con-
version into normal sinus rhythm (NSR) of these 
multiple re-entries is in reverse proportionate to 
the severity of re-entrant circuits in the atria.3,4 
Several studies revealed the correlation between 
the number of re-entrant waves in the atrial cham-
ber and the degree of irregularity pattern in atria 
using signal processing techniques for surface 

electrocardiogram (ECG) analysis. By applying the 
nonlinear method, i.e., sample entropy or SampEn, 
the pattern of atrial signals could be transformed 
and characterized.4 Currently, this novel biosignal 
mechanism is a predictive value for the nature of 
paroxysmal AF as well as a factor of its recurrence 
after treatment with external electrical cardiover-
sion (ECV).1,3,4 

The autonomic nervous system, which contains 
the balance between sympathetic and parasym-
pathetic parts, plays an essential role in cardiac 
rhythm control. The sympathetic system provides 
subepicardial innervation following the courses of 
the main coronary arteries. While the parasympa-
thetic system supplies subendocardial innervation 
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from Faculty of Medicine, Thammasat University, 
and Faculty of Medicine Ramathibodi Hospital, 
Mahidol University (EC approval number: MTU-
EC-PH-2-061/55, issued on October 08, 2013), 
Thailand.

The ECG measurements were collected with a 
sampling rate of 1000 Hz with lead II and V1 for 
a 5min long duration. We independently matched 
paroxysmal AF and persistent AF groups con-
cerning age range (< 45, 45–54, 55–64, 65–74, and 
>74 years), sex, and current CHA2DS2-VASc score 
(cardiac failure or dysfunction or hypertension for 
1 point; age > 75 years for 2 points; diabetes melli-
tus for 1 point; history of stroke for 2 points; vas-
cular diseases for 1 point; age between 65 and 74 
years for 1 point, and female gender for 1 point). 
We selected the related parameters according to the 
previous postulated effects on AF, cerebral infarct, 
and HRV.17 We collected all ECGs under the same 
circumstances with subjects in a supine position in 
a comfortable and quiet room. We also performed 
the inter-rater ECG interpretation in a blinded 
method.

Sample size

The sample size for this study was calculated 
according to the pilot data. Normalized LF power 
in paroxysmal AF versus persistent AF patients 
were 29 and 18 normalized units (n.u.), respec-
tively. Since the standard deviation (σ) was 12 n.u., 
the formula from the test of difference of two inde-
pendent means (at α = 0.05 and β = 0.8) was applied 
to estimate sample size (n) as follows:
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ECG analysis

Sample entropy
Several studies demonstrated a relationship 
between the degree of irregularity and the number 
of re-entrant waves or circuits roaming throughout 

across the atrioventricular groove via the vagus 
nerve.5 These connections between the heart and 
the brain, the so-called brain-heart interactions, 
affect the occurrence of many types of cardiac 
arrhythmias.6 One of the ideal conditions for an 
insight into the brain-heart interaction is insular 
lobe damage.7 The evidence supports the role of 
the insula in cardiovascular autonomic regulation.8 
A clinical study demonstrated that insular infarc-
tion was inducing cerebrogenic arrhythmia lead-
ing to sudden cardiac death.9 This finding reflects 
that brain injury, particularly insular damage, also 
affects cardiac autonomic regulation and becomes 
arrhythmogenesis. Therefore, the brain-heart inter-
action control should give clinical benefit and may 
prevent the occurrence of AF.

Heart rate variability (HRV) represents auto-
nomic regulation in the heart. Abnormalities in 
HRV reflect autonomic control disturbances in 
many cardiac diseases, including AF.10 HRV is a 
promising marker for autonomic disturbance in 
patients with acute cerebral infarct.11 The decreased 
HRV was reported in patients with acute cerebral 
infarct and chronic AF.12–14 The lower standard 
deviation of normal-to-normal (NN) RR intervals 
(SDNNs) is an essential predictor for poor patient 
outcomes with cerebral infarct.15

Furthermore, our previous study has demon-
strated significantly reduced HRV (low-frequency 
power [LF]) in persistent AF compared with par-
oxysmal AF, reflecting possible relation between 
HRV and a degree of cardiac autonomic impair-
ment in both AF types.16 As mentioned earlier, 
SampEn, a surrogate marker for degrees of irreg-
ularity, becomes a new potential predictor for AF 
recurrence after ECV, including the behavior of 
paroxysmal AF. Therefore, we aimed to evaluate 
SampEn and HRV between paroxysmal AF and 
persistent AF. 

Material and Methods

Patients and ECG recordings

Forty cases including 20 paroxysmal AF patients 
and 20 persistent AF patients, were recruited 
from October 2013 to September 2014. The 
study followed through in agreement with the 
Declaration of Helsinki (2008) of the World 
Medical Association. Patient care followed appro-
priate standards of Human Ethics Committee 
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section of HRV, high-frequency power range (HF) 
corresponds to the respiratory sinus arrhythmia 
(RSA) and indicates cardiac parasympathetic tone. 
In contrast, the low-frequency power range (LF) 
represents a combination of the parasympathetic 
and sympathetic systems. Furthermore, the LF/
HF ratio represents the sympathovagal balance.11 
The quality of standard short-term (5 min) HRV 
analysis is as reliable as the long-term (24 h) Holter 
ECGs.27,28. In this study, we also used nonlinear 
HRV, i.e. Poincaré plot analysis, and detrended fluc-
tuation analysis, for more thorough ECG analyses.

Poincaré plot. As complex mechanisms regulate 
HRV, it consists of nonlinear properties. RR inter-
val Poincaré plot is a well-known nonlinear assess-
ment that corresponds to a quantitative visual 
technique.29 This scheme contains a disperse plot 
of the current RR interval compared with the pre-
ceding RR interval. Dots beneath the boundary 
at 45° to the normal axis or the so-called bound-
ary of identity represent current RR intervals that 
are shorter than the preceding RR interval, and 
dots beyond the boundary of identity represent 
longer RR intervals than the previous ones.30 A 
natural approach to visualize the character of the 
Poincaré plot is to apply an ellipse to the scheme. 
This ellipse represents the boundary of identity. 
The scattering of dots along the vertical axis to the 
boundary of identity indicates short-term vari-
ability, quantified by the standard deviation of the 
distances the dots lie from the boundary of iden-
tity (SD1). SD1 indicates the standard deviation 
of the consecutive differences of the RR intervals 
(SDSD) or rMSSD,31 mostly mediated by the para-
sympathetic system or vagal activity and related 
to RSA. The standard deviation of dots beside the 
boundary of identity (SD2) represents the stan-
dard deviation of the RR intervals and is related to 
long-term variability.32 

Detrended fluctuation analysis (DFA)

DFA is a technique to identify and measure the 
relationship of physiologic time series. DFA detects 
not only irregularity but also nonstationary statis-
tical properties changed with time.33 We evaluated 
these signal fluctuations by comparing their nature 
to various noise types seen in dynamic systems.34 
For example, the sequence of RR intervals, which 
are entirely random, i.e. no relationship exists in the 
time series, is classified as white noise.

the atrial chamber. Therefore, more circuits mean a 
higher degree of AF disorganization as well as ele-
vated SampEn values.18,19 SampEn tests repetition 
in a time series by assigning a non-negative number 
to the sequence and corresponding the lower val-
ues to lower irregularity in the data.20 Equation (1), 
was used to compute the SampEn using the nega-
tive logarithm of the probability for the similarity 
between two sequences (during m points and the 
next point) without self-matching.20 The study by 
Alcaraz et al.21 demonstrates that the best m and r 
values for estimation of AF organization are m = 2 
and r = 0.25. 

 ( )
+

=−
m 1

m
C (r)Sample entropy m, r, N  ln
C (r)

 (1)

Where m: embedding dimension, r: tolerance 
parameter, N: data of length, and c:conditional 
probability.

Lead V1 in surface ECG from patients with AF 
provides the best atrial signals for SampEn anal-
ysis.1,22 SampEn is the most favorable method to 
analyze a time series for comparable periods and 
allocate a non-negative number to the sequence. 
The higher SampEn represents a greater degree of 
irregularity.1 SampEn is also useful for differentia-
tion between terminating and nonterminating in 
patients with paroxysmal AF and for the prediction 
of good outcomes after ECV in patients with per-
sistent AF.3,23 

ECGs with a tracing rate of 1000 Hz, 5min in 
length from other digital methods, were evaluated 
under software programs. We modified the princi-
pal structure of the software programs from those 
originally invented by Alcaraz et al.1 and Bollmann 
et al.24 Subsequently, we also applied SampEn eval-
uation on the remaining 10s long successive TQ 
interval of the ECG. 

Heart rate variability
A standard method and guidelines for a reading 

of HRV are determined previously.25 The time-do-
main measurement of HRV includes root mean 
square of consecutive differences between nor-
mal-to-normal (NN) intervals (rMSSD), a standard 
deviation of NN intervals (SDNN), and propor-
tion of consecutive NN intervals higher than 50 ms 
(pNN50). The SDNN reflects the overall HRV and 
beat-to-beat variations in RR intervals (rMSSD). 
While the pNN50 represents parasympathetic or 
vagal activity.26 Concerning the frequency domain 



Journal of  Cardiovascular Disease Research, 12 (1): 125–133

128 Muengtaweepongsa S et al.

by α1 or the slope acquired from the log-log graph 
within range 4 ≤ n ≤ 16, while α2, which determines 
long-term fluctuations, is the slope acquired from 
the range 16 ≤ n ≤ 64. 

Regarding short-term HRV analysis, the 
LabChart® HRV module was used for time and fre-
quency domain methods. The Kubios HRV 2.0® soft-
ware program was used for nonlinear HRV analysis. 

Statistical analysis

Data are presented as mean ± standard error. The 
student’s t-test was used for continuous variables 
comparison and χ2 test or Fisher’s exact test for 
categorical variables. Pearson’s correlation coeffi-
cients compare the bivariate correlation between 
SampEn and HRV variables. A value of P < 0.05 is 
considered statistically significant when the power 
is 80%. 

Results

Table 1 demonstrates the demographic parameters 
of both groups. No statistically significant difference 
between clinical characteristics and demographic 
data was noted (Table 1). 

Table 2 demonstrates HRV findings in the time 
domain of the patients in both groups. Patients 
with persistent AF had significantly higher heart 
rate, SDNN, rMSSD, and pNN50 versus paroxys-
mal AF (Table 2). 

The LF and HF power in n.u. are demonstrated 
in Figure 2. LF in patients with persistent AF is sig-
nificantly lower versus paroxysmal AF (17 + 2 and 
26 + 4 n.u., respectively). In HF and LF/HF ratio, 
no significant difference between persistent AF and 

In contrast, if the RR interval at any given 
moment is solidly associated with the prior interval, 
it is the so-called random walk or Brownian noise. 
The DFA technique measures the detrended fluctu-
ations or F (n) of a signal at different time scales n 
(Equations (2, 3)). The parameter α, or the scaling 
exponent approximated by a linear regression fitting 
of log F (n) versus log n, measures the relationship 
of the signal. If α is equal to 0.5, there is no correla-
tion, and the signal is white noise. If α is equal to 
1.5, the signal is a random walk. If α is between 0.5 
and 1.5, there are positive correlations.35 
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Where, N = data of length, RR = the mean of RR 
interval, and RRj = value of RR interval at j point

The original time series of RR intervals are 
incorporated and subsequently divided into boxes 
of equivalent duration, n. For each duration n, a 
least-squares line, representing the tendency in 
that box, is suitable to the data. The degree of the 
fluctuations, or F (n), is subsequently measured as 
the root mean square deviation between the incor-
porated RR interval and its tendency in each box. 
This calculation is duplicated over all time scales or 
box sizes. A linear relationship on a log-log graph 
implies the existence of self-similarity, such that 
fluctuations in small boxes are correlated with that 
in larger boxes. α represents the gradient of the line 
relating log F (n) to log n.34 The associations are 
usually divided into short- and long-term fluctua-
tions. The short-term fluctuations are characterized 

Table 1 The baseline characteristics of the patients.a

Characteristics Paroxysmal atrial fibrillation patients (n = 20) Persistent atrial fibrillation patients (n = 20) P values

Age, years 69 + 3 69 + 2 NS

Female, n (%)  6 (30)  6 (30) NS

CHF, n (%)  2 (10)  1 (5) NS

HT, n (%) 12 (60) 13 (65) NS

DM, n (%)  4 (20)  4 (20) NS

Vascular diseases, n (%)  3 (15)  1 (5) NS

CHA2DS2-VASc score 4.0 + 0.4 4.2 + 0.4 NS

Use of anticoagulants, n (%) 16 (80) 15 (75) NS

a Values are mean + standard error or n (%). Differences between groups are presented as P values.
CHF, congestive heart failure; HT, hypertension; DM, diabetes mellitus; NS, not significant.
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Table 2 Heart rate variability (measured in the time domain) of the patients.a

HRV parameters Paroxysmal atrial fibrillation patients (n = 20) Persistent atrial fibrillation patients (n = 20) P values

Heart rate, bpm  70 + 4  85 + 4 < 0.05

SDNN, ms  57 + 15  167 + 13 < 0.01

rMSSD, ms  78 + 24  236 + 18 < 0.01

pNN50, %  10 + 3  78 + 2 < 0.01

aValues are mean + standard error and differences between groups are presented as P values.
SDNN, a standard deviation of all normal-to-normal RR intervals; rMSSD, root mean square of differences of adjacent normal-to-
normal RR intervals; pNN50, number of normal-to-normal RR intervals differing by more than 50 ms from adjacent interval divided by 
the total number of all normal-to-normal RR intervals.

Detection of R peak, Q
onset and T-wave end
for QRS-T cancellation

TQ interval joining
with window

function

Figure 1 Signal processing diagram to acquire atrial signals without ventricular activities or TQ intervals. A representa-
tive TQ interval extracted from ECG by the cancellation of the QRS-T complex was demonstrated.
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Figure 2 Low-and high-frequency power in normalized 
units (n.u.) from patients with paroxysmal and persistent 
AF. P values are shown for the comparison between groups.

paroxysmal AF groups, i.e., 40 ± 3 vs. 45 ± 3 for 
HF, and 0.44 ± 0.05 vs. 0.64 ± 0.13 for LF/HF ratio, 
respectively (Figure 3). Furthermore, from fig-
ure 3 SampEn is significantly decreased in patients 
with paroxysmal AF (0.10 + 0.01) compared with 
patients with persistent AF (0.13 + 0.01). 

The only correlation between SampEn and 
pNN50 was significant (R = 0.38, P < 0.05) after 
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Figure 3 Sample entropy and low- to high-frequency 
power ratio from patients with paroxysmal and persistent 
AF. P values are shown for the comparison between groups.

analyzing paroxysmal- and persistent AF groups 
together. Figure 4 shows that this correlation was 
more prominent in persistent AF group (R = 0.52, 
P < 0.05).

Table 3 demonstrates nonlinear HRV analyses 
of the patients in both groups. SD1 and SD2 for 
Poincaré plot analysis are higher in the persistent 
AF group compared with paroxysmal AF. Though 
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Table 3 Nonlinear heart rate variability of the patients.a

HRV parameters Paroxysmal atrial fibrillation patients (n = 20) Persistent atrial fibrillation patients (n = 20) P values

SD1, ms 54 + 16 168 + 12 < 0.001

SD2, ms 62 + 16 170 + 13 < 0.001

α1 0.78 + 0.10  0.60 + 0.02 NS

α2 0.88 + 0.08  0.46 + 0.04 < 0.001

a Values are mean + standard error, and differences between groups are presented as P values.
NS, not significant.
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Figure 4 Scatter plot between sample entropy or 
SampEn and pNN50 in patients with persistent atrial 
fibrillation. The slope of the regression line (dashed 
line) indicates positive correlation between SampEn 
and pNN50 (R = 0.52, P < 0.05). pNN50: number of nor-
mal-to-normal RR intervals differing by more than 50 ms 
from adjacent interval divided by the total number of all 
normal-to-normal RR intervals.
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Figure 5 Representative Poincaré plot and detrended fluctuation analysis or DFA of two pairs of matched patients; 
paroxysmal AF patients (A and C) were matched (according to age, gender, and underlying diseases) with persistent AF 
patients (B and D, respectively). 

both DFA variables, α1 and α2, are lower in the for-
mer group, only α2 shows a significant difference 
(Table 3). Figure 5 demonstrates the representa-
tives of the Poincaré plot and DFA oft two pairs of 
matched patients in each group.

Discussion

In this study, we used a matching method for the 
best comparisons between paroxysmal and per-
sistent AF groups to eradicate most of the possible 
confounding factors affecting SampEn and HRV 
parameters, including age, gender, heart failure, 
hypertension, and diabetes mellitus. Our study 
indicates the potential relations between cardiac 
autonomic modulation determined by an altered 
HRV and potential marker for the complexity of 
AF signal, particularly SampEn, in patients with 
AF. The study demonstrated modulation of primary 
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across a broad range of time scales. Lack of this 
correlation would narrow the functional respon-
siveness against any pathological processes as 
found in aging.33 In patients with persistent AF, the 
irregular ventricular response over relatively small 
time scales (lower α1 compared to the values in 
paroxysmal AF patients with NSR) could enhance 
the degree of decreased long-term DFA coefficient 
(α2) to resemble white noise. However, most of our 
study populations in both groups were elderly sub-
jects with a mean age of 69 years.

Previous studies provided evidence for auto-
nomic alterations related to the short-term DFA 
coefficient.39,40 Tulppo et al. 40 reported that cardiac 
vagal blockade with atropine increased the α1 value. 
Moreover, more recently, Castiglioni et  al. 39 have 
confirmed the findings by the study on posture 
changing from supine to sitting position, which 
increases autonomic tone fluctuation. They have 
found that the expected increase in autonomic tone 
fluctuation is associated with a steeper slope of α1. 
Moreover, Bettoni and Zimmermann41 reported 
evidence of autonomic tone variations right before 
the occurrence of paroxysmal AF. Accordingly, our 
study revealed an increase in α1 along with changes 
in other HRV parameters, especially lower rMSSD, 
pNN50, and SD1, in paroxysmal AF patients, as 
described previously. Altogether, these indicated 
lower fluctuation of HRV in paroxysmal AF com-
pared with the persistent AF group and emphasized 
the role of the autonomic nervous system in the 
neural mechanism of AF. 

Limitations

Only 5 min of collecting time may not be long 
enough for HRV analysis in the time domain. This 
critical limitation can lead to the wrong interpre-
tation of HRV. However, long-duration monitor-
ing for HRV with our machine is not possible for 
ambulatory patients. This disadvantage of the HRV 
machine is a critical limitation for its use in clin-
ical practice.42 We tried to analyze both the time 
and frequency domain to intensify the reliability of 
HRV interpretation.  

Conclusion

In summary, atrial electrical complexity with 
increased SampEn and cardiac autonomic 

HRV values (both time and frequency domain) 
reflecting wide fluctuation of HRV, i.e. increased 
SDNN, rMSSD, pNN50, and decreased LF, in per-
sistent AF patients compared with those in the par-
oxysmal AF group. Furthermore, we found a close 
positive correlation between SampEn and pNN50 
in all patients, similar to the correlation in the per-
sistent AF group, which could relate to the underly-
ing cardiac autonomic modulation. 

The reduction of the atrial refractory period 
should play an essential role in the re-entry mecha-
nism for the occurrence of AF. The implementation 
of SampEn in AF supplies a remarkable indicator 
for unsynchronized atrial activities to evaluate the 
number of active re-entries and indirectly represent 
refractory properties within the atrial chamber.18 
Many studies demonstrated that the sympathova-
gal imbalance might affect re-entry mechanisms in 
AF.36,37 According to this assumption, high fluctua-
tion of HRV due to cardiac autonomic modulation 
in persistent AF could lead to more complicated 
re-entry and remodeling, or higher SampEn values, 
compared to paroxysmal AF in this study. 

The nonlinear HRV parameters demonstrated a 
higher degree of beat-to-beat variability or complex-
ity shown by higher SD1 from nonlinear Poincaré 
plot analysis in persistent AF patients versus those 
in the paroxysmal AF group. These suggested a rela-
tively high degree of fluctuation in the persistent AF 
group, consistently with the increased rMSSD and 
pNN50 in the time domain HRV findings.

The previous study by Vikram et al.38 demon-
strated an alteration of the short-term relationship 
of RR interval (decreased α1) preceding the spon-
taneous occurrence of paroxysmal AF episodes 
in patients without evidence of structural cardiac 
disease. This finding was undetectable by conven-
tional time and frequency domain measurements 
but unveiled by DFA. In our study, both α1 and α2 
in persistent AF have been shown to decrease com-
pared with paroxysmal AF. The reduced short-term 
DFA coefficient (α1) toward 0.5 in both paroxysmal 
and persistent AF patients from our findings is still 
consistent with the previous study, which reported a 
decrease in α1 (< 1) before the onset of AF episodes.38 

Nevertheless, the level of altered DFA coeffi-
cients was prominent for α2 compared with α1 in 
our study. The possible reason may be associated 
with the dominant relation between α2 and aging.39 
The correlation observed from DFA reflects a self 
organizing mechanism for extremely complex pro-
cesses (e.g. heart beating) that create fluctuations 
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modulation with high fluctuation of HRV may 
induce AF to become persistent. Further studies are 
needed to confirm this hypothesis.
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