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ABSTRACT

Over the past decade, molecular details of lymphatic vessels (lymphatics) have been rapidly acquired due 
to the identification of lymphatic endothelial-specific markers. Separate from the cardiovascular system, the 
lymphatic system is also an elaborate network of vessels that are important in normal physiology. Lymphatic 
vessels have the unique task to regulate fluid homeostasis, assist in immune surveillance, and transport dietary 
lipids. However, dysfunctional lymphatic vessels can cause pathology, while normal lymphatics can exacerbate 
pathology. This review summarizes the development and growth of lymphatic vessels in addition to highlighting 
their critical roles in physiology and pathology. Also, we discuss recent work that suggests a connection between 
lymphatic dysfunction and cardiovascular disease.
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immune surveillance, transport of  nutrients from the 
intestine, and regulation of  tissue pressure. Furthermore, 
the blood and lymphatic vasculatures are fundamentally 
different in their mode of  operation. The blood system 
is a closed circuit system of  high pressure that transports  
its content throughout the body, with the heart providing 
the force necessary for circulation. On the other hand, the 
lymphatic system is a unidirectional, low-pressure system 
that is relatively “passive” in its mode of  action. Hence, 
lymph is propelled forward by respiration, skeletal muscle 
contraction, and intrinsic contraction of  smooth muscle 
cells that surround the larger collecting lymphatic vessels. 
Unlike blood capillaries, lymphatic capillaries are more 
firmly attached to the extracellular matrix by anchoring 
filaments. Despite their functional and morphological 
differences, they do have some characteristics in common. 
Similar to blood vessels, larger lymphatic vessels contain 
a basement membrane in addition to valves that aid in 
unidirectional flow. In addition, certain signaling molecules 
common to both vasculatures  are necessary during 
development and tissue remodeling, as discussed later.

Lymphatic vessel development

For the most part, the molecular mechanisms that dictate 
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INTRODUCTION

Lymphatic vessels were described dating back to the 
17th century.[1] As the second component of  the human 
vasculature, they are less well characterized relative 
to blood vessels. At the turn of  the 21st century, the 
identification of  lymphatic endothelial markers such as 
Prox-1,[2] podoplanin,[3] and lymphatic vessel endothelial 
hyaluronan receptor-1 (LYVE-1)[4] has advanced study of  
lymphatic endothelial cells (LECs) during the past decade. 
For some time, it has been known that lymphatic vessels 
complement blood vessels by absorbing fluid, proteins, 
and cells (collectively known as lymph) from the interstitial 
space. Therefore, lymphatic vessels are found in most, but 
not all, vascularized tissues. However, it is appreciated that 
the lymphatic vasculature serves critical and nonredundant 
roles apart from the blood vascular system. It assists in 
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the development and growth of  lymphatic vessels contrast 
to those of  blood vessels. In the early 20th century, two 
models were put forward regarding how the lymphatic 
system develops. In 1902, Florence Sabin proposed that 
the blood vasculature gave rise to the lymphatic vasculature. 
Through meticulous ink-injection experiments, she 
concluded that the lymphatics originated in the cardinal 
vein of  fetal pigs, form lymph sacs that migrate toward the 
periphery, and form lymph vessels that spread throughout 
the body.[5] A few years later, Huntington and McClure 
proposed that lymphangioblasts form the original lymph 
sacs and later establish venous connections.[6] While 
there is evidence in non-mammalian species that suggest 
embryonic veins and mesenchymal lymphangioblasts 
contribute to lymphatic vessels, much molecular support 
for Sabin’s model has been generated thus far, in addition to 
lineage tracing experiments that further support the existing 
data that lymphatics are derived from the venous system.[7] 

In mouse development, a subset of  venous endothelial cells 
in the anterior cardinal vein express Sox-18, a member of  
the Sox family of  transcription factors, which have been 
shown to have a pivotal role in cardiovascular and blood 
vascular development.[8,9] Sox-18 is expressed in the cardinal 
vein at E9.0 in a subpopulation of  endothelial cells. Sox-18 
can then bind to the promoter of  Prox-1, also a homeobox 
transcription factor, to initiate the lymphatic specification 
program [Figure 1a]. In addition, Coup-TFII, an orphan 
nuclear receptor, assists in turning on and maintaining the 
expression of  Prox-1 [Figure 1a].[10] Prox-1 expression in 
this subset of  cells in the anterior cardinal vein around 
embryonic (E) 9.75 of  mouse development is necessary 
for these blood endothelial cells to subsequently commit 
to the LEC lineage.[2] After commitment to the lymphatic 
cell lineage, vascular endothelial growth factor receptor-3 
(VEGFR-3) is critical for sprouting and migration 
in response to its ligand, vascular endothelial growth 
factor-C [VEGF-C, Figure 1b].[11] Sprouting is necessary 
for the formation of  the primary lymph sacs [Figure 1c].
Peripheral lymphatic vessels are thought to subsequently 
form by centrifugal sprouting from the primary lymph 
sacs, followed by maturation of  large collecting lymphatic 
vessels [Figure 1e]. 

A cadre of  genes have been found to be important for each 
stage of  lymphatic development, which include lymphatic 
commitment, migration and proliferation, separation, 
and remodeling/maturation. These molecular mediators 
are thoroughly summarized elsewhere.[12]  Furthermore, 
recent work has suggested that micro-RNAs are involved 
in the regulation of  lymphatic vascular lineage-specific 
differentiation from blood ECs in vitro and lymphatic 

vascular development in vivo.[13,14] Also, attention has 
refocused on the role of  the hematopoietic system and 
its role in allowing lymphatic vessels to separate from 
blood vessels. Mice lacking certain signaling mediators 
have been shown to develop blood-lymphatic mixing 
during embryonic development.[15-18] This is the product 
of  misconnections between lymphatics and blood vessels. 
Podoplanin, a transmembrane glycoprotein and surface 
marker for lymphatic endothelium, has recently gained 
interest. Podoplanin allows aggregation of  platelets through 
interaction with the C-type lectin-like receptor 2 (CLEC-2) on 
platelets.[19,20] Recently, it was found that podoplanin-deficient 
mice phenocopy the blood-lymphatic mixing found in 
knockout mice other genes that are critical for separation of  
lymphatic vessels from blood vessels.[21-23] Therefore, platelets 
are also important for lymphatic separation from the blood 
endothelium [Figures 1c and 1d]. This has raised interesting 
questions concerning the nature of  the interactions between 
platelets and the endothelium during lymphatic separation. 
Further work is needed to characterize mechanisms of  
lymphatic development and determine if  similar mechanisms 
are recapitulated in pathological lymphangiogenesis.

THE PHYSIOLOGICAL ROLE OF LYMPHATICS

Lymphatics and fluid/fat uptake

Our cardiovascular system forces blood through the 
microcirculation. The dynamics of  blood pressure and 
osmotic pressure is responsible for leakage of  a relatively 
small amount of  fluid from the blood into the interstitial 
space. However, collectively, in humans, tissue fluid and 
lymph make up a volume of  approximately 12 liters.[24] 

In normal physiology, the blind-ended lymphatic vascular 
system drains this extravasated interstitial fluid from 
peripheral tissue and returns it to the blood. Through 
specialized junctions, the lymphatic capillaries are 
responsible for uptake of  this fluid along with immune 
cells, antigens, lipids, macromolecules, and particulate 
matter, collectively referred to as lymph,[24] once inside 
lymphatic vessels. Having little or no basement membrane, 
lymphatic capillaries are composed of  a single layer of  thin-
walled LECs[25] and are attached to the extracelluar matrix 
by anchoring filaments.[26,27] From the capillaries, lymph 
travels toward larger collecting lymphatic vessels, which are 
significantly different from lymphatic capillaries in that they 
have a basement membrane, contain intraluminal valves to 
ensure unidirectional flow, and are surrounded by smooth 
muscle cells, which serve as an intrinsic pump for lymphatic 
flow.[28] Indeed, removal of  this fluid is critical in order to 
conserve tissue homeostasis, as will be discussed later.
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The discovery of  lymphatic vessels dates back hundreds 
of  years. They were reported to be found in the mesentery 
of  well fed dogs in 17th century by Aselli.[1] Consumption 
of  foods rich in lipids have been shown to increase 
lymph flow.[29] This observation underscores the role of  
the lymphatics in lipid transport. In the Western diet, the 
majority of  dietary lipids are long-chain triglycerides that are 
digested and absorbed in distinct steps. Luminal hydrolysis 
in the intestine produces fatty acids and monoglycerides, 
which form mixed micelles with bile salts and enter mucosal 
enterocytes, where endoplasmic reticulum enzymes convert 
them back into triglycerides. Through mostly unknown 
mechanisms, these dietary lipids, known as chylomicrons, 
enter the lymphatic system in intestinal villi through 
lacteals, which are specialized lymphatic vessels. From the 
lacteals, these large lipoproteins then travel through the 
submucosal lymphatics and larger mesenteric lymphatics. 
Next, chylomicrons enter the blood to deliver triglycerides 
to adipose and muscle before going to the liver to deliver 
cholesterol. Due to the important role in fat absorption, 
lymphatic dysfunction often leads to accumulation of  fat 
in mice and humans.

Lymphatics and immunity

Lymphatic vessels are abundant in many organs of  the 
body, such as the skin. Perhaps, this is an evolutionary 

advantage to protect the host from foreign microbes, as 
lymphatic vessels are a critical component of  the immune 
response. It is known that dendritic cells (DCs) in peripheral 
tissues upregulate the chemokine receptor, CCR7, after 
encountering pathogen-associated molecular patterns 
(PAMPS). This upregulation increases responsiveness to its 
ligand chemokine (C-C motif) ligand 21 (CCL21), which is 
expressed on lymphatic vessels.[30,31] DCs and other antigen-
presenting cells (APCs) travel through afferent lymphatic 
vessels en route to lymph nodes where they present antigen 
to prime T cells and mount an adaptive immune response. 
Efferent lymphatic vessels are critical for allowing activated 
lymphocytes to exit from lymph nodes and return to the 
blood where they are transported to tissues throughout 
the body to serve their effector functions. In addition to 
priming T cells, lymph node-resident and incoming DCs 
are important for T-cell education and maintenance of  
peripheral tolerance. After entry into the lymph nodes, 
DCs via CCR7 migrate to the paracortex region of  the 
lymph node, which produces CCL19 and CCL21.[32] 

Here, they interact with naive T cells that have also exited 
peripheral tissue via CCR7.[33] It is appreciated that the 
continuous sampling of  antigen by DCs is necessary for 
the maintenance of  peripheral tolerance.[34] However, 
DCs and other APCs do not have to gather all peripheral 
antigens. The flow of  lymph, via lymphatic vessels, can 
assist in peripheral tolerance by bringing soluble antigen 

Figure 1: Development of the murine lymphatic vasculature. (a) Lymphatic competent “precursors” begin to express Sox-18 and CoupTFII, which 
subsequently induce expression of Prox-1, which is responsible for induction of and maintenance of the LEC phenotype. (b) A mesenchymal source 
of VEGF-C initiates sprouting of LECs and formation of primitive lymph sacs, through VEGFR-3. With the assistance of platelets and a continued 
source of VEGF-C, lymphatic cells separate from veins and proliferate to form a primitive lymphatic network (c, d), which is later remodeled into 
the mature lymphatic vascular system that features organization into capillaries and larger collecting vessels (e)
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to lymph node resident APCs. Furthermore, this afferent 
lymphatic flow is critical for maintaining lymph node 
architecture,[35] an additional positive regulator of  peripheral 
tolerance. Recent work has shown that lymphatic vessels in 
the lymph node can directly maintain peripheral tolerance 
through expression of  certain peripheral tissue antigens 
that cause CD8 T-cell deletion upon presentation by 
MHC class I.[36,37] Furthermore, the relationship between 
lymphatic vessels and lymphocytes in the lymph node 
appears to be even more dynamic and complex. T cells, 
through the production of  interferon gamma (IFNγ), 
inhibit lymph node lymphangiogenesis.[38] On the other 
hand, B cells can positively regulate lymphangiogenesis,[39] 

through production of  lymphangiogenic factors. These 
results indicate that the lymphatic vasculature is more than 
a passive conduit or a waste disposal for but is very active in 
immunological surveillance and lymph node homeostasis, 
thereby enhancing immunity.

LYMPHATIC SIGNALING

VEGF family

One of  the most potent inducers of  angiogenesis, vascular 
endothelial growth factor (or VEGF-A), was discovered 
more than two decades ago.[40] Since then, the family has 
grown and consists of  additional members including 

placenta growth factor (PlGF), VEGF-B, VEGF-C, 
VEGF-D, and VEGF-E. Collectively, the VEGFs and 
their receptors are critical regulators of  angiogenesis and 
lymphangiogenesis. Of  interest to the lymphatic system, 
VEGF-A, VEGF-C, and VEGF-D have been shown to 
stimulate lymphangiogenesis, through binding specific 
receptors. VEGF-A binds to VEGFR-1/fms-like tyrosine 
kinase 1 (FLT-1) and VEGFR-2/human kinase insert 
domain receptor (KDR), while VEGF-C and VEGF-D 
bind to VEGFR-3/FLT4 and upon proteolytic processing 
can bind to VEGFR-2.[41] VEGFR-1 and VEGFR-2 are 
abundantly expressed on blood endothelial cells and function 
mainly in angiogenesis, while VEGFR-2 and VEGFR-3 

are highly expressed in LECs and primarily function in 
lymphangiogenesis.[42] VEGFRs contain an extracellular 
domain consisting of  seven immunoglobulin (Ig)-like 
domains, a transmembrane domain, and an intracellular 
tyrosine kinase domain that undergoes dimerization and 
autophosphorylation at several tyrosine kinase residues after 
binding of  ligand.[43,44] This recruitment of  downstream 
signaling molecules leads to biological responses such as 
survival, proliferation, and migration [Figure 2].

VEGFR-3 is critical for lymphangiogenesis. The first ligand 
identified for VEGFR-3 was VEGF-C.[45] The spatiotemporal 
expression of  VEGF-C with lymphatics suggested a role for 
VEGF-C in lymphatic development.[46] Indeed, a critical role 

Figure 2: VEGF-VEGFR signaling in lymphangiogenesis. Of the VEGFR family proteins, VEGFR-2 and VEGFR-3 are strongly expressed in 
hLECs in vivo and exist as homodimers and heterodimers. VEGF-A activates VEGFR-2, whereas VEGF-C and VEGF-D activate both VEGFR-2 
(after proteolytic cleavage) and VEGFR-3. In human lymphatic EC, VEGF-A preferentially induces phosphorylation of PLC-γ. In contrast, VEGF-C 
and D preferentially activate the Akt pathway. Both growth factors strongly activate the MAPK pathway. These signaling pathways have been 
shown to lead to effector functions of LECs, namely migration, sprouting, proliferation, enlargement (growth), survival and tube formation in vivo 
and in vivo. pY, tyrosine phosphorylation
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for VEGF-C in lymphangiogenesis was seen in VEGF-C 
null mice, which die before birth due to an inability of  
committed lymphatic vessels to migrate and proliferate.[11] 

In addition to VEGF-C, VEGF-D has also been identified 
as a ligand for VEGFR-3.[47] Additional proof  of  the ability 
of  VEGF-C and VEGF-D to stimulate lymphatic growth 
can be seen in individual overexpression of  these ligands 
using transgenic mice. Under the control of  a skin-specific 
promoter, VEGF-C and VEGF-D induce lymphatic 
hyperplasia.[48,49] Similarly, a mutant form of  VEGF-C 
(VEGF-C156S, which only binds VEGFR-3) was sufficient 
for lymphatic growth. In vitro, VEGF-C/VEGFR-3 
signaling is important for proliferation, migration, and 
survival of  LECs through the activation of  Akt and MAPK 
pathways.[50] It is worth noting that VEGFR-3 is expressed 
on certain tumor-associated blood vessels and blood vessels 
undergoing active angiogenic sprouting.[51] Furthermore, 
VEGFR-3-deficient mice die from failure of  the primary 
vascular network to remodel, suggesting an important role 
for VEGFR-3 in blood vessels.

While VEGF-A is an undisputed inducer of  angiogenesis, 
several lines of  recent evidence support its role in 
lymphangiogenesis. Transgenic overexpression of  VEGF-A 
promoted lymphangiogenesis.[52] Moreover, local injection 
of  VEGF-A adenovirus into mouse ears induced significant 
lymphatic vessel growth, locally and systemically.[53,54] In 
addition, chronically inflamed tissue produced VEGF-A, 
which resulted in lymphangiogenesis.[55] It is unclear whether 
all these effects are accounted for through the VEGFR-2 
receptor, or indirectly through recruitment of  another 
cell type or upregulation of  VEGF-C/D. However, it has 
been documented that systemic blockade of  VEGFR-2 or 
VEGF-A prevented VEGF-A-induced lymphatic vessel 
formation in vivo.[55,56] In vitro, LECs signal through VEGFR-2, 
similarly to blood endothelial cells, but VEGF-C appears to 
be more potent for tube formation.[54] Our results also show 
that VEGF-A strongly activates the PLCγ pathway, while 
VEGF-C strongly activates the Akt pathway. Differential 
signaling “downstream” of  VEGF receptors may lead to 
differences in functional outcomes. One molecule that we 
have identified downstream of  VEGFR signaling is Bmx, a 
nonrecptor tyrosine kinase. Upon silencing Bmx, VEGFR 
-2/3 signaling was partially reduced, suggesting additional 
mediators of  VEGF signaling. However, mechanistically, 
Bmx can interact with VEGFR-2 and VEGFR-3 to mediate 
downstream signaling of  VEGF-A and VEGF-C.

It is known that VEGFR-2 and VEGFR-3 can form 
heterodimers, potentially in response to VEGF-A and 
VEGF-C.[57] It will be worthwhile to further dissect the 
differential roles of  VEGFR-2/3 heterodimers on LECs 

in vitro and in vivo, as this interaction has shown to contribute 
to lymphangiogenic sprouting.[57] In addition, there may 
be unique signaling pathways activated in response to 
heterodimer formation, compared with either receptor 
alone. As mentioned earlier, VEGF/VEGFR-2 signaling 
can promote lymphangiogenesis in lymph nodes. However, 
VEGF/VEGFR-2 signals seem to mainly promote 
lymphatic vessel enlargement but not vessel sprouting in the 
skin. It will also be interesting to investigate if  organ-specific 
differences account for the contrasting phenotypes. If  so, 
what is the difference in the signaling repertoire between skin 
and lymph node lymphatics? These answers may be relevant 
for therapeutic organ-specific targeting of  lymphatic vessels.

OTHER REGULATORS OF LYMPHANGIOGENESIS

While the VEGF family of  receptors is well characterized, 
a plethora of  other molecules are known to stimulate 
lymphangiogenesis. Other growth factors such as insulin-like 
growth factor (IGF) 1 and 2, fibroblast growth factor (FGF)-
2, platelet-derived growth factor (PDGF), hepatocyte growth 
factor (HGF), and angiopoietin-1 have all been shown to 
be lymphangiogenic.[58-63] In addition, cytokines such as 
tumor necrosis factor (TNF-α) and lymphotoxin-α have 
been shown to drive lymphangiogenesis.[64,65] Unexpected 
inducers of  lymphangiogenesis have been found 
such as Netrin-4, a secreted protein involved in axon 
guidance.[66] Adrenomedullin and endothelin-1, peptide 
vasodilator and vasoconstrictor, respectively, contribute 
to lymphangiogenesis.[67,68] Hormones such as luteinizing 
hormone, follicle-stimulating hormone, and growth 
hormone can also stimulate lymphangiogenesis.[69] Some 
aforementioned effects are direct, while others have been 
indirect, through upregulation of  VEGF-C, for example. 
Conversely, transforming growth factor -beta (TGF-β), 
IFN γ, and thrombospondin-1 have been shown to 
inhibit lymphangiogenesis.[38,70-73] While the molecular 
mechanism of  TGF-β-mediated inhibition is unknown, 
IFNγ downregulates Prox-1 and expression of  LEC-specific 
genes, thus leading to decreased lymphangiogenesis in vitro. 
Thrombospondin-1 inhibits expression of  VEGF-C/D 
via a CD36-dependent mechanism in monocytes. With 
knowledge of  many ligands involved in lymphangiogenesis, 
further insight will be gained by exploring intracellular 
signaling pathways in response to these molecules.

LYMPHATICS IN PATHOLOGY

Lymphedema

When lymphatic vessels are dysfunctional, the importance 
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of  the lymphatics in tissue drainage is manifested by 
lymphedema, in which the main symptom is persistent 
(chronic) swelling, usually of  extremities. Lymphedema 
is classified as two forms: primary and secondary 
lymphedema. Primary lymphedema has a genetic etiology 
that leads to inadequate functioning of  the lymphatic 
vasculature. It can present at birth or arise later in life. 
The oldest report of  congenital lymphedema is known 
as Milroy’s disease. Multiple reports have linked Milroy 
disease with a mutation in the tyrosine kinase domain 
of  the VEGFR-3 gene.[74-76] Interestingly, the Chy mouse 
mutant, a model for congenital lymphedema that contains 
a heterozygous mutation to deactivate VEGFR-3, has 
abnormal cutaneous lymphatic vessels and symptoms 
of  lymphedema.[77] A list of  genes related to primary 
lymphedema is summarized elsewhere.[12]

Secondary lymphedema is the most common cause 
of  edema. It is caused by obstruction or damage to 
normal lymphatic vessels. In industrialized countries, a 
common cause of  edema is from surgery.[78] In tropical 
and subtropical countries, pathogenic filarial parasites are  
the major cause of  lymphedema.[79] These mosquito- 
borne parasites reside in and cause damage to the lymphatic 
vessels, leading to an inhibition of  lymphatic function.[79]

Currently, there is no cure for lymphedema. Therapeutic 
approaches include massage therapy, exercise, dietary 
restrictions, compression garments, skin care, manual 
drainage, and liposuction. VEGF-C/D-based therapeutics 
appear to be a promising alternative, as VEGF-C/D 
regenerated collecting lymphatic vessels improved the 
outcome of  lymph node transplantation.[80]

Lymphatic vessels in chronic inflammation and cancer

In adulthood, lymphangiogenesis occurs primarily 
during tissue regeneration, tumor growth, and acute and 
chronic inflammation. Much attention has been focused 
on lymphangiogenesis in the context of  inflammation. 
Inflammation is a well-known phenomenon that occurs 
in response to infection or injury. During inflammation, 
a variety of  cell types are recruited to the inflamed 
sites. Among these, macrophages have been extensively 
implicated in the production of  VEGF-C and VEGF-D, 
leading to lymphangiogenesis.[81] In addition to secretion 
of  growth factors, macrophages have been reported 
to transdifferentiate and incorporate into lymphatic 
vessels in the context of  inflammation in the cornea.[84] 
Although lymphangiogenesis is well documented during 
inflammation, the biological role of  lymphangiogenesis 
during inflammation is not well understood. Presumably, 

one would expect lymphangiogenesis to be beneficial 
by allowing immune trafficking and clearance of  
pathogen infection and inflammation. This would resolve 
inflammation and enhance antigen presentation. Indeed, 
activation of  lymphatic vessels by overexpression of  
VEGFR-3-specific ligands inhibits acute and chronic 
inflammation.[82,83] However, several reports suggest that 
lymphatic vessels generated during inflammation are not 
beneficial to the host. For example, a murine ovarian 
cancer model resulted in significant lymphangiogenesis. 
However, lymphatic vessels in this case were nonfunctional, 
as determined by functional assays.[85] Crohn’s disease, 
an autoimmune inflammatory bowel disease, is often 
associated with lymphatic vessel dysfunction. Similarly, 
lymphatic contractile activity was compromised in a 
model of  intestinal inflammation.[86] In addition, results 
suggest that even in acute inflammation, the function 
of  the endothelial barriers in the initial lymphatics may 
be compromised.[87] Interestingly, during inflammation, 
cytokines are produced which have been shown to have 
negative effects on lymphatic vessels directly.[88] The 
presence of  these cytokines may have a detrimental effect 
on lymphatic vessels during inflammation. Further work 
is needed to determine the temporal and spatial function 
of  these cytokines in specific pathologies.

In addit ion to angiogenesis,  tumors st imulate 
lymphangiogenesis in experimental murine models and in 
human cancers.[89] Lymphatic vessels have also been found to 
contribute to the metastasis of  primary tumor cells to draining 
lymph nodes and distant organs. Tumor cells can disseminate 
through preexisting lymphatic vessels. In addition, it has been 
found that tumors can secrete prolymphangiogenic growth 
factors such as VEGF-A, VEGF-C, and VEGF-D which can 
directly induce lymphangiogenesis in order to advance their 
spread to the draining lymph nodes and distant organs.[90] In 
particular, VEGF-C has been found to upregulate CCL21 
production in lymphatic endothelium, which in turn can 
promote lymphatic entry, by CCR7 -expressing tumor cells.[91] 

VEGF-C is also a chemoattractant for macrophages via 
VEGFR-3, which is expressed by a population of  peripheral 
blood monocytes and activated tissue macrophages.[92] 

This recruitment may lead to further lymphangiogenesis. 
Therefore, the presence of  VEGF-C (and VEGF-D) is 
associated with increased metastasis and poor prognosis in 
human patients.[89]

Lymphatic vessels and cardiovascular disease

The metabolic syndrome (MetS) is characterized by a 
cluster of  metabolic risk factors and includes abdominal 
obesity, dyslipidemia, hypertension, insulin resistance, and 
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proinflammation and prothrombiotic conditions. Those 
with MetS are at increased risk for cardiovascular disease.[93] 

Obesity is considered a key contributing factor leading 
to the increased prevalence of  the metabolic syndrome. 
Interestingly, several mouse models and cases of  human 
pathology show the association between dysfunctional 
lymphatic vessels and obesity [Figure 3].

The 17th century observation of  “milky veins” in fed dogs 
is now known to be chyle, a milky fluid rich in chylomicrons 
that consists of  cholesterol, phospholipids, triglycerides 
and apolipoproteins. Chyle is transported by lacteals, 
which are specialized lymphatic capillaries that absorb 
dietary fats in the small intestinal villi. One can envision 
that a failure of  lymphatics to absorb or transport lipids 
can start a cascade of  metabolic disorders. Individuals that 
have genetic mutations associated with genes critical for 
lymphatic signaling often present with subcutaneous edema 
and chylothorax as summarized by Schulte-Merker et al.[12] 
Moreover, several mutant mice created to study lymphatic 
vessels have abnormal fat accumulation. The Chy mouse, 

mentioned earlier, is characterized by the accumulation 
of  chylous ascites in the abdomen.[77] In addition, the 
K14-VEGFR-3-Ig transgenic mouse, which blocks 
VEGF-C-mediated signaling, develop a lymphedematous-
like phenotype that includes increased deposition of  
subcutaneous fat.[94] An extensive list of  murine genes that 
lead to lymphatic-associated fat accumulation is reviewed 
in Cueni et al.[95] Perhaps the most striking example is seen 
with the loss of  one allele of  Prox-1. Prox-1 heterozygosity 
resulted in defects of  the lymphatic vasculature that lead to 
chylous ascites and adult onset obesity.[96] Interestingly, the 
integrity of  the lymphatic vasculature was compromised 
in these mice, notably in the mesenteric lymphatic 
vessels, suggesting obesity may be a consequence of  
malfunctioning lymphatic vessels. It is also tempting 
to speculate that these mice may also have increased 
inflammation, leading to altered integrity of  lymphatic 
vessels. Nonetheless, lymph was shown to promote 
differentiation of  3T3-L1 preadipocytes into adipocytes 
by unknown factors, indicating extravasated lymph, due 
to compromised lymphatic vessels, may directly influence 

Figure 3: Proposed working model for dysfunctional lymphatic vessel contribution to cardiovascular disease (evidence from literature in text). 
Persons diagnosed with metabolic syndrome are at greater risk to develop cardiovascular disease. The metabolic syndrome is a condition 
diagnosed with the appearance of several risk factors in an individual, and obesity is considered a major risk factor. Dysfunctional lymphatic 
vessels are unable to properly drain lymph and chyle (shown here). This can cause edema and increased fluid volume leading to chylous ascites 
and chylothorax. Furthermore, chyle (including chylomicrons) can leak from compromised lymphatics and influence surrounding reservoirs of 
fat. Lymph can cause maturation of preadipocytes and growth of adipose tissue. Secretion of inflammatory cytokines from adipose tissue and 
macrophages is exacerbated in obese individuals. Recruitment of macrophages to adipose tissue is increased and excess inflammation can increase 
lymphangiogenesis and add further detriment to lymphatic vessels, amplifying the cycle, and may eventually contribute to cardiovascular disease 



148 Journal of Cardiovascular Disease Research Vol. 2 / No 3

Jones and Min: Overview of lymphatic vessels

fat deposition. Indeed, these mice have subcutaneous 
and intra-abdominal fat accumulation, which has been 
implicated in metabolic disorders to a greater extent than 
total body fat.[97] It is known that adipose tissue can function 
as an endocrine organ, not to mention its function as the 
major storage site for triglycerides.[98] Adipokines, which are 
adipocyte-derived factors such as adiponectin and leptin, 
affect body energy homeostasis through autocrine and 
endocrine functions. Interestingly, Prox-1 heterozygous 
mice have increased leptin, an adipose-derived satiety 
hormone that acts on the hypothalamus to inhibit feeding. 
Moreover, visceral fat adipokine secretion is associated with 
systemic inflammation, insulin resistance, and diabetes in 
obese humans.[99-101] However, it is unclear if  inflammation 
is a cause or consequence of  obesity. Data have suggested 
that an increase in adiposity is accompanied by an increase 
in the inflammatory response.[99] Interestingly, there was 
an increased accumulation of  macrophages in adipose 
tissue in the mesentery of  the Prox-1 heterozygous mice. 
In addition to inflammatory cytokines such as TNFα and 
IL-6 secreted by adipose cells, macrophages have also 
been shown to be a source of  proinflammatory factors in 
adipose tissue.[102]  Collectively, these adipokines are able to 
recruit and activate more macrophages, which have been 
associated with insulin resistance.[103] This cyclical dynamic 
may be in part responsible for the low-grade inflammation 
linked to MetS.

In addition to inflammatory cytokines, adipose- associated 
macrophages can secrete angiogenic factors such as 
VEGF.[104] It is also possible that these adipose- macrophages 
can stimulate lymphangiogenesis, as macrophages also release 
growth factors including VEGF-C and VEGF-D, which 
elicit the formation of  lymphatic vessels. Stimulation of  
lymphangiogenesis would likely lead to enhanced transport 
of  lipids. However, several lines of  evidence suggest the 
contrary. As previously mentioned, lymphatic function was 
shown to be impaired in several models of  inflammation, 
suggesting that lymphatic function might be compromised in 
some inflammatory diseases, leading to further exacerbation 
of  edema, inflammation, and obesity.[85,86]

Environmental factors including diet are thought to 
represent the etiology of  the MetS.[105] Diets rich in long-
chain triglycerides depend on the lymphatics for absorption 
after being packaged into chylomicrons. It is plausible that 
individuals with lymphatic abnormalities are more prone to 
developing symptoms of  the MetS. Evidence has shown 
that circulating chylomicrons trigger an inflammatory 
response with the recruitment of  neutrophils and 
activation of  monocytes.[106] Furthermore, postprandial 
lipoproteins can upregulate expression of  leukocyte 

adhesion molecules on the blood endothelium, thereby 
orchestrating adhesion and migration of  inflammatory cells 
into various tissues.[107] It is possible that a higher level of  
circulating chylomicrons, due to impaired lymphatics, may 
exacerbate an otherwise normal physiological response 
leading to chronic inflammation that negatively affects 
lymphatic vessels, causing increased deposition of  fat. 
Circulating lipids can then accumulate in both adipocytes 
and macrophages (foam cells), as found in atherosclerosis. 
Lipid storage in macrophages is an important step in 
the development of  atherosclerosis, where plaque lesion 
progression is correlated with accumulation of  foam 
cells.[108] Apolipoprotein E null mice are commonly 
used to investigate the biological mechanisms of  
plaque development in arteries. Interestingly, lymphatic 
vessel functions are also compromised as dyslipidemia 
advances in apolipoprotein null mice.[109] Elevated levels 
of  chylomicrons may be a significant and independent 
risk factor for the development of  cardiovascular disease 
by enhancing inflammation, leading to dysfunctional 
lymphatic vessels, which in turn exacerbates inflammation-
associated pathology [Figure 3].

Hypertension is another major risk factor for cardiovascular 
disease. An excess of  dietary salt has been commonly 
linked to hypertension. Recent work in rats on a high 
salt diet has shown that excess sodium accumulates 
in the interstitium of  the skin, leading to a hypertonic 
state.[110] Mononuclear phagocyte system cells, importantly 
macrophages, sense hypertonicity and produce VEGF-C, 
which promotes lymphatic vessel growth, providing an 
additional buffer in response to high salt intake. In cultured 
macrophages, VEGF-C was regulated through tonicity 
enhanced binding protein (TonEBP), an osmotic stress 
responsive transcription factor. This phenomenon was due 
to VEGFR-3, as blocking VEGFR-3 resulted in increased 
blood pressure in mice on a high salt diet. In agreement, 
human subjects with refractory hypertension had higher 
concentrations of  plasma VEGF-C compared with 
normotensive control subjects, providing further evidence 
of  lymphatic vessels and macrophage contribution to 
interstitial fluid and blood pressure homeostasis.

In addition to indirect damage to the heart from resulting 
pathological sequelae, the lymphatic vessels of  the heart 
proper have received little attention, although their 
existence has been known for some time.[111] The lymphatic 
system is also involved in fluid homeostasis of  the cardiac 
interstitium, thereby preventing myocardial edema,[112] 

which can result in cardiac dysfunction. As heart function 
is significantly compromised with only a small increase 
in the interstitial fluid volume, it has been proposed that 
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impaired lymph drainage may lead to a variety of  human 
myocardial diseases.[113] Large animal models, such as 
canines, are commonly used to investigate the outcome of  
impaired cardiac lymph flow on myocardial function. In 
an acute myocardial lymph flow impairment model, these 
animals developed cardiac edema and hemorrhage.[114] In 
a chronic cardiac lymph flow impairment model, these 
animals also developed edema, hemorrhages, deposition 
of  fibrous and elastic tissue in addition to reduced cardiac 
function.[113] While the clinical data to link congenital 
lymphedema and cardiac dysfunction are sparse, cardiac 
transplantation serves as a high risk factor for damage of  
cardiac lymphatic vessels. It has been hypothesized that 
lymphatic disruption after cardiac transplantation may 
be a major cause for allograft failure and postoperative 
mortality.[115] Patients with at least one transplant rejection 
had a significantly lower density of  VEGFR-3-positive 
vessels after transplantation.[116] Conversely, an investigation 
by Dashkevich et al. found a significantly higher density of  
Prox-1-positive lymphatic vessels in rejection grade A1 or 
A2 biopsy lung transplant recipients.[117] Similar findings 
were seen in kidney and cornea transplant recipients.[118,119] 
While increased lymphatic vessels can enhance antigen 
presentation and the subsequent adaptive immune response 
that may lead to organ rejection, decreased lymphatic 
vessels can lead to edema, which accompanies acute organ 
rejection in many cases. Further studies are warranted to 
prove the exact cause of  organ rejection in specific cases. 
Such evidence will reveal if  it is beneficial to stimulate 
lymphangiogenesis after cardiac transplantation. Also, to 
what extent is there a balance between too many or too few 
lymphatic vessels? Interestingly, several lines of  evidence 
show that lymphatic vessels can grow or remodel in response 
to pathological changes of  the heart. Infective endocarditis 
was shown to increase the number of  lymphatic vessels,[120] 

but not blood vessels. In addition, lymphangiogenesis  
accompanies other major cardiac pathological changes, such 
as acute and chronic ischemia, progressive atherosclerosis, 
myocarditis, and hypertrophy.[120] Kawasaki disease (KD), 
characterized by systemic vasculitis, especially of  the coronary 
arteries, results in tissue edema. Increased production of  
VEGF-D was associated with lymphangiogenesis in 
patients with acute KD. Consistent with findings in other 
tissues, coronary/cardiac inflammatory cell infiltration was 
accompanied by lymphangiogenesis.[121] It is possible that 
the lymphangiogenesis in certain pathologies may function 
as a compensatory mechanism to maintain physiologic 
conditions and reduce tissue edema during resolution 
of  a particular insult, but lymphatic vessels may become 
compromised due to other inflammatory cytokines present.

CONCLUDING REMARKS

With the emergence of  lymphatic-specific markers, further 
characterization of  the underlying molecular mechanisms 
for lymphangiogenesis may provide a therapeutic avenue for 
selective inhibition of  lymphatic vessels in diseases such as 
cancer. On the other hand, stimulation of  lymphangiogenesis 
may be beneficial in diseases of  lymphatic insufficiency. 
Additional study of  lymphatic vessel regulation will yield 
further insight into recent implications of  their contribution 
to transplant rejection, obesity, hypertension, and other 
metabolic and inflammatory disorders.
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