On Some Properties of Middle Cube Graphs and Their Spectra

Pandu, Rupa Lakshmi,
Assistant Professor,Assistant Professor, Department of Humanities and Science, Samskruti College of Engineering and Techology, Ghatkesar

Abstract

: In this research paper we begin with study of family of n dimensional hyper cube graphs and establish some properties related to their distance, spectra, and multiplicities and associated Eigen vectors and extend to bipartite double graphs [11].In a more involved way since no complete characterization was available with experiential results in several inter connection networks on this spectra our work will add an element to existing theory.

Keywords: Middle cube graphs, distance-regular graph, antipodal graph, bipartite double graph, extended bipartite double graph, Eigen values, Spectrum, Adjacency Matrix. 3

Introduction:

An n dimensional hyper cube $Q_{n}[24]$ also called n-cube is an n dimensional analogue of Square and a Cube. It is closed compact convex figure whose 1-skelton consists of groups of opposite parallel line segments aligned in each of spaces dimensions, perpendicular to each other and of same length.
1.1) A point is a hypercube of dimension zero. If one moves this point one unit length, it will sweep out a line segment, which is the measure polytypic of dimension one. If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a two-dimensional square. If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a three-dimensional cube. This can be generalized to any number of dimensions. For example, if one moves the cube one unit length into the fourth dimension, it generates a 4-dimensional measure polytopes or tesseract.
The family of hypercube is one of the few regular polytopes that are represented in any number of dimensions. The dual polytopes of a hypercube is called a cross-polytypic.
A hypercube of dimension n has $2 n$ "sides" (a 1-dimensional line has 2 end points; a 2-dimensional square has 4 sides or edges; a 3-dimensional cube has 6 faces; a 4 -dimensional Thus 8 cells). The number of vertices (points) of a hypercube is 2^{n} (a cube has 2^{3} vertices, for instance).
The number of m-dimensional hyper cubes on the boundary of an n-cube is

$$
2^{n-m}\binom{n}{m}
$$

For example, the boundary of a 4-cube contains 8 cubes, 24 squares, 32 lines and 16 vertices.

A projection of hypercube into two-dimensional image

A unit hyper cube is a hyper cube whose side has length 1 unit whose corners are

$$
V_{2^{n+1}} \leftarrow\left(\begin{array}{ll}
V_{2^{n}} & I_{2^{n}} \\
I_{2^{n}} & V_{2^{n}}
\end{array}\right)
$$

2^{n} Points in R^{n} with each coordinate equal to 0 or 1 termed as measure polytypic.
The correct number of edges of cube of dimension n is $n \times 2^{n-1}$ for example 7 -cube has $7 \times 2^{6}=448$ edges.

1.2) Dimension of the cube

	1	2	3	4	5	6
No. of vertices	2	4	8	16	32	64
No. edges	1	4	12	32	80	192

Here we define adjacency matrix of n cube described in a constructive way.

$$
V_{2^{n+1}} \leftarrow\left(\begin{array}{ll}
V_{2^{n}} & I_{2^{n}} \\
I_{2^{n}} & V_{2^{n}}
\end{array}\right)
$$

Since $n Q_{n}$ is n regular bipartite graph of 2^{n} vertices characteristic vector of subsets of $[\mathrm{n}]=\{1,2,3, \ldots \mathrm{n}\}$ vertices of layer L_{k} corresponds to subsets of cardinality k .

If n is odd $\mathrm{n}=2 \mathrm{k}-1$, the middle two layers L_{k}, L_{k-1} of Q_{n} with $n c_{k}, n c_{k-1}$ vertices forms middle cube graph $\mathrm{M} Q_{k}$ by induction.

As $\mathrm{M} Q_{k}$ is bipartite double graph which is a sub graph of n -cube Q_{n} induced by vertices whose binary representations have either $\mathrm{k}-1$ or k no. of 1 's is of k -regular as shown in figures below

The middle cube graph MQ_{2} is a sub graph of Q_{3} or is the bipartite double graph of $Q_{2}=\mathrm{K}_{3}$.

We start with spectral properties of bipartite double graphs [17][18] and extend for study of Eigen values of $\mathrm{M} Q_{k}$.
1.3) Bipartite double graph: Let $\mathrm{H}=(\mathrm{V}, \mathrm{E})$ be a graph of order n , with vertex set $\mathrm{V}=\{1,2 \ldots \mathrm{n}\}$. Its bipartite double graph $1+\lambda,-1-\lambda \hat{H} \quad \bar{H}=(\bar{V}, \bar{E})$ is the graph with the duplicated vertex set
$\bar{V}=\left\{1,2 \ldots \mathrm{n} .1^{\prime}, 2^{\prime}, \ldots \mathrm{n}^{\prime}\right\}$ and adjacencies induced from the adjacencies in H as follows:

$$
i: j \Rightarrow\left\{\begin{array}{c}
E \\
i: j^{\prime} \\
j: i^{\prime}
\end{array}\right.
$$

Thus, the edge set of \bar{H} is $\bar{E}=\left\{\mathrm{ij}^{\prime} \mid \mathrm{ij} \in \mathrm{E}\right\}$. From the definition, it follows that \bar{H} is a bipartite graph [24.21] with stable subsets $V_{1}=\{1,2 \ldots \mathrm{n}\}$, and $V_{2}=\left\{1^{\prime}, 2^{\prime}, \ldots \mathrm{n}^{\prime}\right\}$. For example, if H is a bipartite graph, then its bipartite double graphs \bar{H} consists of two non-connected copies of H .

Path p-4 and its bipartite Double Graph

Graph H has diameter 2 and \bar{H} has diameter 3

If H is a δ-regular graph, then \bar{H} also, if the degree sequence of the original graph H is $\delta=\left(\delta_{1}, \delta_{2}, \delta_{3} \ldots \delta_{n}\right)$, the degree sequence for its bipartite double graph is $\bar{\delta}=\left(\delta_{1}, \delta_{2}, \delta_{3} \ldots \delta_{n}, \delta_{1}, \delta_{2}, \delta_{3} \ldots . \delta_{n}\right)$
The distance between vertices in the bipartite double graph H can be given in terms of even and odd distances in H .

$$
\begin{aligned}
& \operatorname{dist}_{\bar{H}}(\mathrm{i}, \mathrm{j})=\operatorname{dist}_{H}^{+}(\mathrm{i}, \mathrm{j}) \\
& \operatorname{dist}_{\bar{H}}\left(\mathrm{i}, \mathrm{j}^{\prime}\right)=\operatorname{dist}_{H}^{-}(\mathrm{i}, \mathrm{j})
\end{aligned}
$$

Involutive auto Orphism without fixed edges, which interchanges vertices i and i, the map from
\bar{H} Onto H defined $i^{\prime} \rightarrow i, i \rightarrow i$ is a 2 -fold covering.
If \hat{H} is extended bipartite double graph by adding edges (i,i') for each $i \in V \bar{H} \equiv \hat{H}$.

1.4) Notations:

The order of the graph G is $n=\{V\}$ and its size is $m=\{E\}$. We label the vertices with the integers $1,2, \ldots, n$. If i is (E)
adjacent to j , that $\mathrm{is}, \mathrm{ij} \in \mathrm{E}$, we write $\mathrm{i}: \mathrm{j}$ or $\mathrm{i}: ~ \mathrm{j}$. The distance between two vertices is denoted by dist (i, j). We also use the concepts of even distance and odd distance between vertices, denoted by dist+ and dist -, respectively. They are defined as the length of a shortest even (respectively, odd) walk between the corresponding vertices. The set of vertices which are L-apart from vertex i , with respect to the usual distance, is $\Gamma_{l}(i)=\{j: \operatorname{dist}(\mathrm{i}, \mathrm{j})=l$, so that the degree of vertex is simply $\Gamma_{l}(i)$. The eccentricity of a vertex is ecc $(\mathrm{i})=\max _{1 \leq X_{1 \leq j \leq n}} \operatorname{dist}(\mathrm{i}, \mathrm{j}) \max 1 \mathrm{j}_{_} \mathrm{n}$ distt $(\mathrm{i} ; \mathrm{j})$ and the diameter of the graph is $\mathrm{D}=\mathrm{D}(\mathrm{G}) \max _{1 \leq X_{1 \leq \leq \leq n}} \operatorname{dist}(\mathrm{i}, \mathrm{j})$ graph G^{\prime} has the same vertex set as G and two vertices are adjacent in G^{\prime} if and only if they are at distance 1 in G. An antipodal graph G is a connected graph of diameter D for which GD is a disjoint union of cliques. The folded graph of G is the graph G whose vertices are the maximal cliques.
Let $\mathrm{G}=(\mathrm{V} ; \mathrm{E})$ be a graph with adjacency matrix A and λ-eigenvector v . Then, the charge of vertex $\mathrm{i} \in \mathrm{V}$ is the entry vi of v , and the equation $A v=\lambda v . \Rightarrow$ Eigen values of the bipartite double graph $[11,16] \bar{G}$ and the extended bipartite double graph \hat{G} as functions of the Eigen values of a non-bipartite graph G.
2) Theorem: Let F be a field and let R be a commutative sub ring of $\mathrm{F}^{\mathrm{n} * n}$, the set of all $\mathrm{n} * \mathrm{n}$ Matrices over F . Let $\mathrm{M} \in R^{m^{*} \mathrm{~m}}$, then

$$
\begin{gathered}
\operatorname{det}_{F}(\mathrm{M})=\operatorname{det}_{F}\left(\operatorname{det}_{R}(\mathrm{M})\right) \\
\therefore \operatorname{det}_{F}(\mathrm{M})=\operatorname{det}_{F}(\mathrm{AD}-\mathrm{BC}) .
\end{gathered}
$$

for a bipartite double graph characteristic polynomial. [13]

We prove the following theorems showing geometric multiplicities of Eigen value λ of $\mathrm{H} \Rightarrow$ geometric multiplicities of Eigen values λ and $-\lambda$ of \bar{H}
$1+\lambda,-1-\lambda$ of \hat{H}
2.1) Theorem: Let H be a graph on n vertices, with the adjacency matrix A and characteristic

$$
\begin{aligned}
& \bar{u}=u_{i}^{+} v_{i}(1+\lambda): \\
& \left(u^{+}\right)_{i^{\prime}}=\sum_{\substack{E \\
j: i^{\prime}}} u^{+}=\sum_{\substack{E \\
j: i}} v_{j}=\lambda v_{i}=\lambda u_{i}^{+}
\end{aligned}
$$

Polynomial $\varnothing_{H}(\mathrm{x})$. Then, the characteristic polynomials of \bar{H} and \hat{H} are, respectively,

$$
\begin{aligned}
& \varnothing_{:}(\mathrm{x})=(-1)^{n} \varnothing_{H}(\mathrm{x}) \varnothing_{H}(-\mathrm{x}), \\
& \varnothing_{\hat{H}}(\mathrm{x})=(-1)^{n} \varnothing_{H}(\mathrm{x}-1) \varnothing_{H}(-\mathrm{x}-1) .
\end{aligned}
$$

Adjacency matrices are, respectively,

$$
A=\left(\begin{array}{ll}
0 & A \\
A & 0
\end{array}\right) \text { and } \hat{A}=\left(\begin{array}{cc}
\mathrm{O} & \mathrm{~A}+\mathrm{I} \\
\mathrm{~A}+\mathrm{I} & \mathrm{O}
\end{array}\right)
$$

By above corollary

$$
\begin{aligned}
\varnothing_{\dot{H}}(\mathrm{x}) & =\operatorname{det}\left(\mathrm{xI}_{2 \mathrm{n}}-A\right)=\operatorname{det}\left(\begin{array}{cc}
\mathrm{xI}_{n} & -\mathrm{A} \\
-\mathrm{A} & \mathrm{xI}_{n}
\end{array}\right)=\operatorname{det}\left(\mathrm{x}^{2} \mathrm{I}_{n}-\mathrm{A}^{2}\right) \\
& =\operatorname{det}\left(\mathrm{xI}_{n}-\mathrm{A}\right) \operatorname{det}\left(\mathrm{xI}_{n}+\mathrm{A}\right)=(. .1)^{\mathrm{n}} \varnothing_{H}(\mathrm{x}) \varnothing_{H}(-\mathrm{x}) ;
\end{aligned}
$$

Whereas, the characteristic polynomial of \hat{H} is

$$
\begin{aligned}
\varnothing_{\dot{H}}(\mathrm{x}) & =\operatorname{det}\left(\mathrm{xI}_{2 \mathrm{n}}-\hat{A}\right)=\operatorname{det}\left(\begin{array}{cc}
\mathrm{xI}_{n} & -\mathrm{A}-\mathrm{I}_{n} \\
-\mathrm{A}-\mathrm{I}_{n} & \mathrm{xI}_{n}
\end{array}\right) \\
& =\operatorname{det}\left(\mathrm{x}^{2} \mathrm{I}_{n}-\left(\mathrm{A}+\mathrm{I}_{n}\right)^{2}\right)=\operatorname{det}\left(\mathrm{xI}_{n}-\left(\mathrm{A}+\mathrm{I}_{n}\right)\right) \operatorname{det}\left(\mathrm{xI}_{n}+\left(\mathrm{A}+\mathrm{I}_{n}\right)\right) \\
& =\operatorname{det}\left((\mathrm{x}-1) \mathrm{I}_{n}-A\right)(-1)^{n} \operatorname{det}\left(-(x+1) \mathrm{I}_{n}-A\right) \\
& =(-1)^{n} \varnothing_{H}(\mathrm{x}-1) \varnothing_{H}(-\mathrm{x}-1) .
\end{aligned}
$$

2.2) Theorem: Let H be a graph and v a λ-eigenvector H. Let us consider the vector $u+$ with Components $u_{i}^{+}=u_{i^{\prime}}^{+}=v_{i}$, u- with components $u_{i}^{-}=v_{i}$ and $u_{i^{\prime}}^{-}=-v_{i}$ for $1 \leq i, i^{\prime} \leq n$
Then,
$u^{+} \lambda$-eigenvector \bar{H} and $(1+\lambda)$ eigenvector \hat{H}
$\bar{u}-\lambda$-eigenvector \bar{H} and $(-1-\lambda)$ eigenvector \hat{H}
Given vertex $\mathrm{i}, 1 \leq i \leq n$, all its adjacent vertices are of type j , with $\mathrm{i}(\mathrm{E}): \mathrm{j}$.
Then

$$
\left(\mathrm{A} u^{+}\right)_{i}=\sum_{\substack{E \\ j: i^{\prime}}} u \stackrel{+}{j}=\sum_{\substack{E \\ j: i}} v_{j}=\lambda v_{i}=\lambda u_{i}^{+}
$$

Given vertex $\mathrm{I}^{\prime}, 1 \leq i \leq n$, all its adjacent vertices are of type j , with $\mathrm{i}(\mathrm{E}): \mathrm{j}$.
Then

$$
\left(\mathrm{A} u^{+}\right)_{i^{\prime}}=\sum_{\substack{E \\ j: i^{\prime}}} u \stackrel{+}{j}=\sum_{\substack{E \\ j: i^{\prime}}} v_{j}=\lambda v_{i}=\lambda u_{i}^{+}
$$

By a similar reasoning with u^{-}, we obtain

$$
\begin{gathered}
\left(\mathrm{A} u^{-}\right)_{i}=\sum_{\substack{E \\
j: i^{\prime}}} u \stackrel{+}{j^{\prime}}=-\sum_{\substack{E \\
j: i}} v_{j}=-\lambda u_{i-} \text { and } \\
\left(\mathrm{A} u^{-}\right)_{i^{\prime}}=\sum_{\substack{E \\
j: i^{\prime}}} u \bar{j}=\sum_{\substack{E \\
j: i}} v_{j}=-\lambda u_{i}^{\prime} \\
m\left(\lambda_{0}\right)=m\left(\lambda_{5}\right)=m\left(\theta_{0}^{ \pm}\right)=1, \\
m\left(\lambda_{1}\right)=m\left(\lambda_{4}\right)=m\left(\theta_{1}^{ \pm}\right)=4, \\
m\left(\lambda_{2}\right)=m\left(\lambda_{3}\right)=m\left(\theta_{2}^{ \pm}\right)=5,
\end{gathered}
$$

$\therefore u^{-}$Is $-\lambda$-eigenvector of bipartite double graph \bar{H}.
Also $1+\lambda,-1-\lambda$ are Eigen values for u^{+}, u^{-}Eigen vectors of \hat{H}
From the above figures realizing an isomorphism [8, 2] defined by

$$
f: V\left[O_{k}^{0}\right] \rightarrow \mathrm{V}\left[\mathrm{MQ}_{k}\right]
$$

$\begin{array}{cc}u a & u \\ u^{\prime} & \bar{u}\end{array}$
Is clearly directive, according to the definition of bipartite double graph, if u and v^{\prime} are two vertices of \mathcal{B}_{k}^{o}.
The middle cube graph $\left[\mathrm{MQ}_{k}\right]$ with $\mathrm{D}=2 \mathrm{k}-1$ by above corollary is isomorphic to \mathscr{O}_{k}^{o}.
We prove spectrum of $Q_{2 k-1}$ contains all Eigen values of $\left[\mathrm{MQ}_{k}\right]$,
$\theta_{i}^{+}=(-1)^{i}(\mathrm{k}-\mathrm{i})$ and $=\theta_{i}^{-}=-\theta_{i}^{+}$for $0 \leq i \leq k-1$
With multiplicities $m\left(\theta_{i}^{+}\right)=\mathrm{m}\left(\theta_{i}^{-}\right)=\frac{k-1}{k}\binom{2 k}{i}$

3) Conclusion:

In Verification of the above results,

$$
\begin{aligned}
& s p M Q_{3}=\left\{ \pm 2, \pm 1^{2}\right\} \\
& \operatorname{spM} Q_{5}=\left\{ \pm 3, \pm 2^{4}, \pm 1^{5}\right\} \\
& s p M Q_{7}=\left\{ \pm 4, \pm 3^{6}, \pm 2^{14}, \pm 1^{14}\right\} \\
& s p M Q_{9}=\left\{ \pm 5, \pm 4^{8}, \pm 3^{27}, \pm 2^{48}, \pm 1^{42}\right\}
\end{aligned}
$$

For highest degree Distance polynomials of $\left[\mathrm{MQ}_{k}\right]$
$\mathrm{p} 5(3)=\mathrm{p} 5(1)=\mathrm{p} 5(-1)=1$ and $\mathrm{p} 5(2)=\mathrm{p} 5(-1)=\mathrm{p} 5(-3)=-1$. Then,

$$
\begin{aligned}
& m\left(\lambda_{0}\right)=m\left(\lambda_{5}\right)=m\left(\theta_{0}^{ \pm}\right)=1 \\
& m\left(\lambda_{1}\right)=m\left(\lambda_{4}\right)=m\left(\theta_{1}^{ \pm}\right)=4 \\
& m\left(\lambda_{2}\right)=m\left(\lambda_{3}\right)=m\left(\theta_{2}^{ \pm}\right)=5
\end{aligned}
$$

References:

1. A.E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer, Berlin (1989).
2. B. Mohar, Eigenvalues, diameter and mean distance in graphs, Graphs Combin. Theory Ser.B 68 (1996), 179205.
3. C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, London/New York (1993).
4. C. D. Godsil, More odd graph theory, Discrete Math. 32 (1980), 205-207.
5. C. D. Savage, and I. Shields, A Hamilton path heuristic with applications to the middle two levels problem, Congr. Numer. 140 (1999), 161-178.
6. C. Delorme, and P. Soĺe, Diameter, covering index, covering radius and eigenvalues, EuropeanJ. Combin. 12 (1991), 95-108.
7. E. R. van Dam, and W. H. Haemmers, Eigenvalues and the diameter of graphs, Linear and Multilinear Algebra 39 (1995), 33-44.
8. F. Harary, J. P. Hayes, and H. J. Wu, A survey of the theory of hypercube graphs, Comp.Math. Appl. 15 (1988), no. 4, 277-289.
9. F. R. K. Chung, Diameter and eigenvalues, J. Amer. Math. Soc. 2 (1989), 187-196.
10. Havel, Semipaths in directed cubes, in M. Fiedler (Ed.), Graphs and other Combinatorial Topics, TeunebnerTexte Math., Teubner, Leipzig (1983).
11. I.Bond, and C. Delorme, New large bipartite graphs with given degree and diameter, A Combin. 25C (1988), 123-132.
12. J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly 70 (1963), 30-36.
13. J. R. Silvester, Determinants of block matrices, Maths Gazette 84 (2000), 460-467.
14. J. Robert Johnson, Long cycles in the middle two layers of the discrete cube, J. Combin. Theory Ser. A 105 (2004), 255-271.
15. K. Qiu, and S. K. Das, Interconnexion Networks and Their Eigenvalues, in Proc. of 2002 International Sumposiym on Parallel Architectures, Algorithms and Networks,ISPAN'02,pp. 163-168.
16. M. A. Fiol, Algebraic characterizations of distance-regular graphs, Discrete Math. 246 (2002), 111-129.
17. M. A. Fiol, E. Garriga, and J. L. A. Yebra, Boundary graphs: The limit case of a spectral property, Discrete Math. 226 (2001), 155-173.
18. M. A. Fiol, E. Garriga, and J. L. A. Yebra, Boundary graphs: The limit case of a spectral property (II), Discrete Math. 182 (1998), 101-111.
19. M. A. Fiol, E. Garriga, and J. L. A. Yebra, From regular boundary graphs to antipodal distance-regular graphs, J. Graph Theor. 27 (1998), 123-140.
20. M. A. Fiol, E. Garriga, and J. L. A. Yebra, On a class of polynomials and its relation with the spectra and diameter of graphs, J. Combin. Theory Ser. B 67 (1996), 48-61.
21. M. A. Fiol, E. Garriga, and J. L. A. Yebra, On twisted odd graphs, Combin. Probab. Comput. 9 (2000), 227-240.
22. M.A. Fiol, and M. Mitjana, The spectra of some families of digraphs, Linear Algebra Appl. 423 (2007), no. 1, 109-118.
23. N. Alon and V. Milman, _1, Isoperimetric inequalities for graphs and super-concentrators, J.Combin. Theory Ser. B 38 (1985), 73-88.
24. N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge (1974), secondedition (1993).
25. N. Biggs, An edge coloring problem, Amer. Math. Montly 79 (1972), 1018-1020.
26. N. Biggs, Some odd graph theory, Ann. New York Acad. Sci. 319 (1979), 71-81.
27. T. Balaban, D. Farcussiu, and R. Banica, Graphs of multiple 1; 2 -shifts in carbonium ions and related systems, Rev. Roum. Chim. 11 (1966), 1205-1227.
