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Abstract 

Graph theory might sound like an intimidating and abstract topic but it has an 

abundance of useful and important applications. In this paper, some of the applications of 

graph theory are discussed. Also a concrete example is given to show how a route 

planning/optimization task can be formulated and solved using graph theory. 

 

Introduction  

A brief historical introduction to the field of graph theory, and highlight the 

importance and the wide range of useful applications in many vastly different fields. The basic 

idea of graphs were first introduced in the 18th century by the Swiss mathematician Leonhard 

Euler, one of the most eminent mathematicians of the 18th century. His work on the famous 

“Seven Bridges of Königsberg problem”, are commonly quoted as origin of graph theory. The 

city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel 

River, and included two large islands  Kneiphof and Lomse which were connected to each 

other, or to the two mainland portions of the city, by seven bridges (as illustrated in the below 

figure to the left). The problem was to devise a walk through the city that would cross each of 

those bridges once and only once. Euler, recognizing that the relevant constraints were the 

four bodies of land & the seven bridges, drew out the first known visual representation of a 

modern graph. A modern graph, as seen in bottom-right image, is represented by a set of 

points, known as vertices or nodes, connected by a set of lines known as edges. 

 

 

This abstraction from a concrete problem concerning a city and bridges etc. to a graph makes 

the problem tractable mathematically, as this abstract representation includes only the 

information important for solving the problem. Euler actually proved that this specific 

problem has no solution. However, the difficulty faced was the development of a suitable 

technique of analysis, and of subsequent tests that established this assertion with mathematical 

rigor. From there, the branch of math known as graph theory lay dormant for decades. In 

modern times, however, it’s applications are finally exploding. 

As mentioned previously, the following section still contains some of the basics when 

it comes to different kind of graphs etc., which is of relevance to the example we will discuss 

later on path optimization. Graph Theory is ultimately the study of relationships. Given a set 

of nodes & connections, which can abstract anything from city layouts to computer data, graph 

theory provides a helpful tool to quantify & simplify the many moving parts of dynamic 

systems. Studying graphs through a framework provides answers to many arrangement, 

networking, optimization, matching and operational problems. Graphs can be used to model 

mailto:amalitheresa2018@gmail.com
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Graph_theory
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many types of relations and processes in physical, biological, social and information systems, 

and has a wide range of useful applications such as e.g. 

1. Finding communities in networks, such as social media (friend/connection 

recommendations), or in the recent days for possible spread of COVID19 in the 

community through contacts. 

2. Ranking/ordering hyperlinks in search engines. 

3. GPS/Google maps to find the shortest path home. 

4. Study of molecules and atoms in chemistry. 

5. DNA sequencing 

6. Computer network security and many more…. 

 

 

A simple example of a graph with 6 nodes 

 

 

Types of Graphs 

There are different types of graph representations available and we have to make sure that we 

understand the kind of graph we are working with when programmatically solving a problem 

which includes graphs. 

 Undirected Graphs 
As the name shows, there won’t be any specified directions between nodes. So an edge from 

node A to B would be identical to the edge from B to A. 
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In the above graph, each node could represent different cities and the edges show the 

bidirectional roads. 

 Directed Graphs (DiGraphs) 
Unlike undirected graphs, directed graphs have orientation or direction among different 

nodes. That means if you have an edge from node A to B, you can move only from A to B. 

 

 

 Weighted Graphs 
Many graphs can have edges containing a weight associated to represent a real world 

implication such as cost, distance, quantity etc … 

 

 

 

Weighted graphs could be either directed or undirected graph. The one we have in this 

example is an undirected weighted graph. The cost (or distance) from the green to the orange 

node (and vice versa) is 3. Like our previous example, if you want to travel between two 

cities, say city green and orange, we would have to drive 3 miles. These metrics are self-

defined and could be changed according to the situations. For a more elaborated example, 

https://en.wikipedia.org/wiki/Weighted_graph
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consider you have to travel to city pink from green. If you look at the city graph, we can’t find 

any direct roads or edges between the two cities. So what we can do is to travel via another 

city. The most promising routes would be starting from green to pink via orange and blue. If 

the weights are costs between cities, we would have to spend 11$ to travel via blue to reach 

pink but if we take the other route via orange, we would only have to pay 10$ for the trip. 

There may be several weights associated with each edge, including distance, travel time, or 

monetary cost. Such weighted graphs are commonly used to program GPS’s, and travel-

planning search engines that compare flight times and costs. 

 

Graph Theory → Route optimization 

Graph theory is worth knowing something about, it is now time to focus on our example case 

of route planning when picking items in our warehouse. 

 

Challenge: 
The challenge here is that given a “picking list” as input, we should find the shortest route that 

passes all the pickup points, but also complies to the restrictions with regard to where it is 

possible/allowed to drive. The assumptions and constraints here are that crossing between 

corridors in the warehouse is only allowed at marked “turning points”. Also, the direction of 

travel must follow the specified legal driving direction for each corridor. 

Solution: 

This problem can be formulated as an optimization problem in graph theory. All pickup points 

in the warehouse form a “node” in the graph, where the edges represent permitted 

lanes/corridors and distances between the nodes. To introduce the problem more formally, let 

us start from a simplified example. The graph below represents 2 corridors with 5 

shelves/pickup-points per corridor. All shelves are here represented as a node in the graph, 

with an address ranging from 1–10. The arrows indicate the permitted driving direction, where 

the double arrows indicate that you can drive either way. 

 

 

Being able to represent the permitted driving routes in the form of a graph, means that we can 

use mathematical techniques known from graph theory to find the optimal “driving route” 

between the nodes (i.e., the stock shelves in our warehouse). 

The example graph above can be described mathematically through an adjacency matrix. The 

adjacency matrix to the right in the below figure is thus a representation of our warehouse 

graph, which indicates all permitted driving routes between the various nodes. 

 

https://en.wikipedia.org/wiki/Adjacency_matrix
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 Example 1: You are allowed to travel from node 2 → 3, but not from 3 → 2. 

This is indicated by the “1” in the adjacency matrix to the right. 

 Example 2: You are allowed to go from both node 8 → 3, and from 3 → 8, 

again indicated by the “1”`s in the adjacency matrix (which in this case is 

symmetric when it comes to travel direction). 

 

Back to our warehouse problem: 

A real warehouse is of course bigger and more complex than the above example. However, the 

main principles of how to represent the problem through a graph remains the same. To make 

the real problem slightly simpler (and more visually suitable for this article), I have reduced 

the total number of shelves/pickup-points (approximately every 50th shelf included, marked 

with black squares in the below figure). All pickup points are given an address (“node 

number”) from 1–74. The other relevant constraints mentioned earlier, such as permitted 

driving directions in each of the corridors, as well as the allowed “turning points” and 

shortcuts between the corridors are also indicated in the figure.. 

 
Graph representation of our simplified warehouse 
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The next step is then to represent this graph in the form of a adjacency matrix. Since we are 

here interested in finding both the optimal route and total distance, we must also include the 

driving distance between the various nodes in the matrix. 

 

 
Adjacency matrix for the “warehouse graph” 

 

This matrix indicates all constraints with regard to both the permitted direction of travel, 

which “shortcuts” are permitted, any other restrictions as well as the driving distance between 

the nodes (illustrated through the color). As an example, the “shortcut” between nodes 21 and 

41 shown in the graph representation can clearly be identified also in the adjacency matrix. 

The “white areas” of the matrix represents the paths that are not allowed, indicated through an 

“infinite” distance between those nodes. 

 

From graph representation to path optimization 

Just having an abstracted representation of our warehouse in the form of a graph, does of 

course not solve our actual problem. The idea is rather that through this graph representation, 

we can now use the mathematical framework and algorithms from graph theory to solve it! 

Since graph optimization is a well-known field in mathematics, there are several methods and 

algorithms that can solve this type of problem. In this example case, I have based the solution 

on the “Floyd-Warshall algorithm”, which is a well known algorithm for finding shortest 

paths in a weighted graph. A single execution of the algorithm will find the lengths (summed 

weights) of shortest paths between all pairs of nodes. Although it does not return details of the 

paths themselves, it is possible to reconstruct the paths with simple modifications to the 

algorithm. If you give this algorithm as input a “picking order list” where you go through a list 

of items you want to pick, you should then be able to obtain the optimal route which minimize 

the total driving distance to collect all items on the list. 

Example: Let us start by visualizing the results for a (short) picking list as follows: Start from 

node «0», pick up items at location/node 15, 45, 58 and 73 (where these locations are 

illustrated in the figure below). The algorithm finds the shortest allowable route between these 

points through calculating the “distance matrix”, D, which can then be used to determine the 

total driving distance between all locations/nodes in the picking list. 

 Step 1: D[0][15]   → 90 m 

 Step 2: D[15][45] →52 m 

 Step 3: D[45][58] → 34 m 

 Step 4: D[58][73] → 92 m 

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Weighted_graph
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Total distance = 268m 
 

 

Optimized driving route from picking list 

Have tested several “picking lists” as input and verifying the proposed driving routes and 

calculated distance, the algorithm has been able to find the optimal route in all cases. The 

algorithm respects all the imposed constraints, such as the permitted direction of travel, and 

uses all permitted “shortcuts” to minimize the total distance. From path optimization to useful 

insights As shown through the above example, we have developed an optimization algorithm 

that calculates the optimal driving route via all points on a picking order list (for a simplified 

version of the warehouse). By providing a list of picking orders as input, one can thus 

relatively easily calculate statistics on typical mileage per. picking order. These statistics can 

then also be filtered on various information such as item type, customer, date, etc. In the 

following section, I have thus picked a few examples on how one can extract interesting 

statistics from such a path optimization tool. In doing this, I first generated 10.000 picking 

order lists where the number of items per list ranges from 1–30 items, located at random 

pickup points in the warehouse (address 3–74 in the figure above). By performing the path 

optimization procedure over all these picking list, we can then extract some interesting 

statistics. 

 

Example 1: Calculate mileage as a function of the number of units per. picking order list. 

Here, you would naturally assume that the total mileage increases the more items you have to 

pick. But, at some level, this will start to flatten out. This is due to the fact that one eventually 

has to stop by all the corridors in the warehouse to pick up goods, which then prevents us from 

making use of clever “shortcuts” to minimize the total driving distance. This tendency can be 

illustrated in the figure below to the left, which illustrates that for more than approximately 

15–20 units per picking order, adding extra items does not make the total mileage much longer 

(as you have to drive through all corridors of the warehouse anyway). Note that the figures 

show a “density plot” of the distribution of typical mileage per. picking orders list 

Another interesting statistic, which shows the same trend, is the distribution of driving 

distance per picked item in the figure to the right. Here, we see that for picking lists with few 

items, the typical mileage per. item is relatively high (with a large variance, depending on how 
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“lucky” we are with some items being located in the same corridor etc.). For picking lists with 

several items though, the mileage per. item is gradually decreasing. This type of statistic can 

thus be interesting to investigate closer, in order to optimize how many items each picking 

order list should contain in order to minimize the mileage per picked item. 

 

 

Estimating driving distance per list/item vs. number of items per list. 

 

Example 2: Here we have used real-world data that also contains additional information in the 

form of a customer ID (here shown for only two customers). We can then take a closer look at 

the distribution in mileage per. picking order list for the two customers. For example, do you 

typically have to drive longer distances to pick the goods of one customer versus another? 

And, should you charge that customer extra for this additional cost? The below figure to the 

left shows the distribution in mileage for «Customer 1» and «Customer 2» respectively. One 

of the things we can interpret from this is that for customer 2, most picking order lists have a 

noticeably shorter driving distance compared to customer 1. This can also be shown by 

calculating the average mileage per. picking order list for the two customers (figure to the 

right). 

 

 

This type of information can e.g. be used to implement pricing models where the product price 

to the customer is also based on mileage per order. For customers where the order involves 

more driving (and thus also more time and higher cost) you can consider invoicing extra 

compared to orders that involve short driving distances. 

 

Conclusion 

 

In the end, I hope we have convinced that graph theory is not just some abstract 

mathematical concept, but that it actually has many useful and interesting applications. 

Hopefully, the examples above will be useful for some in solving similar problems later, or at 
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least satisfy some of your curiosity when it comes to graph theory and some of its 

applications. The cases discussed in the article covers just a few examples that illustrate some 

of the possibilities that exist.  
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