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ABSTRACT 

Although cancer treatments are able to successfully kill cancerous 

cells, their effectiveness is mostly limited to a few harmful side 

effects. As a result, antioxidant supplementation, which reduces 

reactive species levels and mitigates persistent oxidative damage, 

is frequently required to alleviate these side effects. As a result, it 

has the potential to prevent cancer cells from growing while 

simultaneously protecting healthy cells. Additionally, antioxidant 

supplementation, either by itself or in conjunction with 

chemotherapeutics, prevents chemoresistance by enhancing the 

response to chemotherapy drugs, improves cancer patients' quality 

of life, and reduces side effects. Phytochemical and dietary 

antioxidants from various sources have been shown to be effective 

in treating chemo and radiation therapy-induced toxicities and 

increasing treatment efficacy in preclinical and clinical studies. 

Algae, both microscopic and macro, may be considered an 

alternative natural source of antioxidants in this context. Green 

growth have cell reinforcements from different gatherings, which 

can be taken advantage of in the drug business. Algal antioxidant 

research and application are still in their infancy, despite their 

nutritional benefits. Twenty-three antioxidants from microalgae are 

discussed in detail in this review article, along with their potential 

mechanism of action in cancer cells and application in cancer 

therapy. Antioxidants derived from seaweeds, particularly those 
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that are edible, are also discussed. 

Keywords: algae, antioxidant, cancer therapy, reactive species, 

dietary supplements, cancer. 

 

INTRODUCTION 

The main force behind maintaining cell metabolism and viability is 

oxygen, which is necessary for aerobic life. Since oxygen's 

paramagnetic properties encourage the formation of partially 

oxidized high-reactive components, or reactive oxygen species 

(ROS), simultaneously (Francenia Santos-Sánchez et al., 2019). 

However the digestion of oxygen produces ROS in residing 

creatures as side-effects, they impact cell flagging and redox 

homeostasis. When the cell comes into contact with either 

endogenous or exogenous sources, ROS levels can sometimes rise, 

resulting in oxidative stress. In such an express, the ROS level 

arrives at a poisonous limit, and it figures out how to beat the 

cancer prevention agent arrangement of the cell, in this way 

escapes to end and stay in the cell (Raza and co., 2017). Negative 

oxidative stress is the result of these reactive oxygen species 

(ROS), which alters cellular signaling pathways, initiates genomic 

instability, or activates immunosuppression, resulting in 

carcinogenesis (Morry et al., 2017). Disease cells are more delicate 

to remedial medications that produce unnecessary measures of 

ROS or debilitate ROS rummaging limit of cells, which incites 

apoptosis (Mut-Salud et al., 2015). 

 

Chemotherapy is still the most common form of cancer treatment 

out of a wide range of options. However tranquilizes utilized in 

chemotherapy can effectively take out quickly developing harmful 

tissues, these medications can influence the mucous layers of 

different organs. As a result, cancer patients experience a number 

of side effects, including anaphylaxis, a different kind of 

cytopenia, toxicity to the liver, heart, nephron, and ear, as well as 

nausea, vomiting, pain, diarrhea, alopecia, anorexia, cachexia, 

mucous membrane inflammation, and asthenia (Oun et al. 2018). 

Antioxidant supplements are frequently prescribed to alleviate 
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these side effects without affecting the effectiveness of the 

treatment (Ambrosone et al., 2019). To manage the side effects of 

their treatments, cancer patients frequently take supplements of 

vitamins and minerals, natural products made from plants, or 

herbal remedies. The most widely recognized suggested cell 

reinforcements are nutrients, polyphenols, and carotenoids. 

Vegetables and fruits that can be eaten are a great source of a 

variety of antioxidant phytochemicals with varying levels of 

antioxidant power. It has been suggested that eating more than 400 

grams of fruits and vegetables daily can help prevent certain types 

of cancer (Miller and Snyder, 2012; Chester et al., 2019; Olivas-

Aguirre and Wall-Medrano, 2020). 

Microalgae can be an excellent alternative source of antioxidant 

compounds in addition to these plant products. Microalgae are in 

many cases considered a jackpot of high worth chemically 

significant metabolites, similar to carotenoids, polyphenols, 

unsaturated fats, phycobiliproteins, nutrients, which are the results 

of guard systems of microalgae against stress factors (Chu, 2013). 

In addition to their in vitro and in vivo anticancer properties, these 

bioactive compounds have been shown to have antioxidant 

properties. For instance, microalgal tetraterpenoids are a decent 

wellspring of cell reinforcements and furthermore have shown 

promising antitumor action in various cell lines. Microalgal 

antioxidants are a good source of nutraceuticals for human health 

because their activity is comparable to or even greater than that of 

antioxidants of plant or animal origin (Sansone and Brunet, 2019). 

Due to their diverse and extensive range of metabolites, rapid 

growth rate, ability to adapt to seasonal changes, lack of need for 

cultivable land or fresh water, and, most importantly, lack of 

impact on food crops, microalgae are increasingly being looked at 

for pharmaceutical applications (Khan et al., 2018). Astaxanthin 

and DHA, which are metabolites of microalgae, are popular 

supplements. Spirulina and chlorella are the two healthy foods that 

are consumed the most frequently in the form of powder, tablets, 

or capsules. Tetraselmis, which is consumed as an antioxidant 

supplement, is currently joining the race. Nutraceuticals can also 
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be found in food products that have been enriched with microalgae 

(Koyande et al., 2019). Seaweeds are also a good source of 

molecules that protect against free radicals. Fucoidans, 

phlorotannin, laminarin, and terpenoids are among these bioactives 

that have been extensively studied for their antioxidant properties 

(Gupta and Abu-Ghannam, 2011). Additionally, many Asian 

nations, including China, Indonesia, Japan, Korea, Malaysia, 

Thailand, and the Philippines, are the most important producers 

and consumers of high-quality edible seaweeds containing these 

antioxidants (Ferdouse et al., 2018). 

However, it has been hypothesized that the antioxidant 

phytochemicals in these algae play a chemo-preventive role in 

normal cells by inhibiting aberrant cell proliferation, metastasis, 

and angiogenesis, preventing ROS-mediated genomic instability, 

and suppressing oxidative stress caused by radiation or 

chemotherapy. Antioxidants can also play a therapeutic role when 

used in conjunction with chemotherapeutic agents. They have the 

potential to increase tumor cell oxidative stress, disable 

transcription factors, activate signaling pathways related to 

apoptosis, and impede signaling pathways related to cell 

proliferation (Chikara et al., 2018).  However, there are still some 

disagreements regarding the  use of  antioxidants in cancer 

treatment. This audit explains receptive species as well as 

oxidative pressure, and their jobs in disease advancement. Then, at 

that point, the characterization and method of activity of cancer 

prevention agents have been made sense of momentarily. Finally, a 

few well-known antioxidants from microalgae and seaweed are 

discussed, along with their potential applications in cancer 

treatment. 

 

REACTIVE SPECIES AND OXIDATIVE STRESS 

Free revolutionaries contain at least one unpaired electrons in their 

molecules' furthest shell, which makes them strikingly receptive 

and more temperamental. They can potentially harm cells and are 

formed in our bodies naturally as byproducts of biological 

processes or from external sources. Shrivastava et al., 2019). Free 
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revolutionaries are connected with responsive oxygen species 

(ROS), receptive nitrogen species (RNS), receptive sulfur species 

(RSS), responsive carbonyl species (RCS), and receptive selenium 

species (RSeS) (Sies et al., 2017). Our bodies continually produce 

these reactive species from both endogenous and exogenous 

sources. Intracellular organelles like peroxisomes and 

mitochondria, as well as extracellular components like 

inflammatory cells like macrophages, eosinophils, and neutrophils, 

are examples of endogenous sources. High ionizing radiation, 

environmental toxins (pollution, allergens, toxic metals like 

cadmium, lead, mercury, iron, arsenic, and pesticides), 

microorganisms, certain drugs, cigarette smoke, alcohol, and 

dietary xenobiotics are examples of exogenous sources (Pizzino et 

al., 2017). 

ROS are extensively studied among these reactive species. ROS is 

produced in the cytosol by solvent cell parts and cytosolic 

chemicals, on layers of mitochondria, in the peroxisomes, in the 

endoplasmic reticulum, on the plasma film of the broken cells, and 

in the lysosomes (Di Meo et al., 2016). However, there are two 

types of ROS: The superoxide anion, nitric oxide, hydroperoxyl, 

and peroxyl radicals, as well as the hydroxyl radical, are examples 

of one type of radical. Non-radical ROS, which lack an unpaired 

electron but retain their chemical reactivity and the ability to 

change into radical ROS (such as singlet oxygen, ozone, hydrogen 

peroxide, and hypochlorous acid, Chahal et al., 2018). ROS can act 

as secondary messengers in cell signaling, stimulating various 

signal transduction pathways that involve gene activation or 

cellular growth and thus contributing significantly to a variety of 

cellular processes (Klaunig and Wang, 2018). 

 

ROS responding with nitric oxide brings about RNS and RSS, with 

thiols (Corpas and Barroso, 2015; Mut-Salud and others, 2015; 

Sies et al., 2017). Nitric oxide (NO•), nitrogen dioxide radical 

(NO2•), peroxynitrite (HNO3), and other nitrogen oxides make up 

RNS, or oxidants that contain nitrogen. Additionally, responsive 

sulfur species (RSS) are sulfur-containing particles, which 
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incorporate hydrogen  sulfide  (H2S),  thiols  (RSH),  persulfides  

(RSSH),  polysulfides,  S-nitrosothiols (RSNO), hydrogen 

polysulfides, and sulfenic acids (RSOH), that play fundamental 

parts in the guideline of cell frameworks (Xu et al., 2019). 

The concept of oxidative stress as a concept in redox biology was 

first discussed in 1985 in the book "Oxidative Stress." According 

to Di Meo et al., oxidative stress (OS) occurs when there is a 

disparity between the biological system in cells' generation of RS 

and its detoxification. 2016). “An imbalance between oxidants and 

antioxidants in favor of the oxidants, leading to a disruption of 

redox signaling and control and/or molecular damage” is what 

Helmut Sie defines as oxidative stress. Oxidative stress can have 

two different effects, which are categorized based on their intensity 

as oxidative stress and oxidative distress. Addressing specific 

targets for redox signaling, which is necessary for maintaining 

normal physiology and is known as oxidative eustress, is possible 

with low exposure to reactive species or oxidants. Through the 

expression of antioxidant proteins and compounds, the base level 

of OS boosts the defense system, resulting in health benefits. 

Conflictingly, over the top oxidant or RS challenge prompts 

disturbed redox flagging, causing harmful impact, as 

macromolecular harm in intracellular organelles, inactivation of 

redox administrative proteins, or strange cell multiplication and 

demise, which is named as oxidative misery (Niki, 2016; Go and 

Jones, 2017; Sies, 2020) (Figure 1). Nutritional, postprandial, 

photooxidative, radiation-induced, reductive, and nitroxidative, 

nitrosative, and nitrative oxidative stress are examples of different 

types of oxidative stress that are mostly determined by the 

generation source (Sies, 2019). 

 

EFFECT ON CANCER CELLS 

Operating system can assume a significant part in all periods of the 

oncogenic cycle (commencement, advancement, and movement), 

by actuating different record factors, including atomic component 

(NF-κB), Atomic variable erythroid 2- related factor 2 (Nrf2), 

hypoxia-inducible element (HIF-1α), activator protein (AP), 
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growth protein (p53), β-catenin/Wnt flagging pathway, which 

helps in balancing the outflow of resistant and provocative related 

qualities and accordingly sets off carcinogenesis (Saed et al., 

2017). Plus, ROS capabilities bidirectionally in malignant growth. 

It can be beneficial or harmful to cancer. A variety of cancer 

signaling   pathways,  including   MAPK/AP-1/NF-B,   associated   

with   cancer metastasis and angiogenesis, can contribute to the 

development of cancer. ROS can also activate NF-B, AP-1, HIF-

1a, growth factors, inflammatory cytokines, and chemokines to 

cause inflammation. Conversely, antitumorigenic signaling is 

triggered when ROS levels rise, which promotes cancer cell death 

caused by oxidative stress (Reczek and Chandel, 2017; Kashyap 

and other, 2019). To enable pro-tumorigenic cell signaling without 

triggering cell death, cancer cells must always maintain an elevated 

ROS level. Additionally, tumor cells stimulate the ROS scavenging 

mechanism in order to keep ROS levels below the cytotoxic 

threshold (Ilghami et al., 2020). 

 

Cell Proliferation and Survival 

The regulation of mitogen-activated protein kinase, protein kinase 

D (PKD) signaling pathways, transcription factors like AP, NF-B, 

and HIF-1, as well as the negative regulation of phosphatases and 

protein tyrosine phosphatase 1B (PTP1B), epigenetic alterations in 

transcription factors and tumor suppressors, Nrf2 and p53, as well 

as by down-regulating the expression of E-cad 2017; Moloney and 

Cotter, 2018). 

 

Genetic Instability 

ROS frequently go about as middle people of DNA harm. ROS-

interacting modifications, such as inter- and intra-strand bindings 

or DNA-protein crosslinks, which alter gene expression, are 

frequently produced when ROS accumulate cells through 

overproduction. ROS cause DNA harm through oxidizing 

nucleoside bases and structure DNA sores, for example, the 

arrangement of 8-oxo guanine, that create DNA twofold strand 

breaks (DSBs), if unrepaired. Degradation, strand breaks, and 
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mitochondrial DNA lesions are all caused by ROS accumulation. 

Moreover, expanded ROS through the enactment of oncogenes 

impacts the replication stress. ROS can oxidize dNTPs, which can 

alter the activity of polymerase, break down replication forks, and 

form DSBs, all of which contribute to genomic instability. 

Additionally, ROS cause proteins associated with the cell cycle 

checkpoint to be activated, resulting in cell cycle arrest. Most 

importantly, these chromosomal changes cause genetic instability 

and, ultimately, cancer (De Sá Junior et al., 2017; Srinivas et al., 

2019). 

 

Cell Death 

Expanded ROS cause cell cycle capture, senescence, and 

apoptosis. Through either intrinsic or extrinsic pathways, elevated 

intracellular ROS production induces apoptosis. Besides, ROS 

trigger apoptosis by inactivating or upgrading the ubiquitination of 

against apoptotic protein, Bcl-2, and by diminishing the degrees of 

apoptosis controller, Bax, and Terrible. Then again, ROS can kill 

disease cells through autophagy, a successful safeguard against 

operating system harm. ROS can inhibit the negative regulator of 

autophagy (TORC1) and inactivate genes related to autophagy. 

Necrosis is accelerated by ROS produced by NOXs or in the 

electron transport chain of mitochondria. Besides, growth silencer 

protein p53 causes cell demise through ferroptosis (relies upon 

intracellular iron) which is actuated by expanded ROS level 

(Perillo et al., 2020). 

 

Angiogenesis and Metastasis 

In metastasis, growth cells are coursed from the essential site to 

different spots in the body by means of blood and lymph. ROS can 

cause metastasis by initiating hypoxia-interceded MMPs (lattice 

metalloproteinases) and cathepsin articulation. Numerous tumor 

progression pathways and metastasis signaling pathways may be 

stimulated or altered by an elevated ROS level, activating the 

MMP enzymes. ROS can contribute to tumor migration if they are 

produced by signaling kinases that are modulated by integrin 
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assembly and activated growth factor receptors. Cell invasion is 

caused by FAK (cell motility controlling protein) activation, which 

is mediated by ROS. Cofilin, an actin-binding protein, can also be 

activated by ROS, facilitating cell migration. 

In any case, metastasis can be prompted by ROS by different 

systems additionally, as proteolytic debasement of 

glycosaminoglycan (GAG) and other ECM parts. By inhibiting 

prolyl hydroxylases (PHDs) and, consequently, VEGF (primary 

pro-angiogenic factor) activation, an elevated level of ROS can 

stabilize HIF, rendering angiogenesis and tumor progression 

impossible (Galadari et al., 2017; Kashyap and other, 2019). 

 

Chemoresistance 

Chemoresistance is an essential driver of therapy inadequacy in 

malignant growth. A transporter protein known as P-glycoprotein 

is a multidrug resistance protein that is responsible for the efflux or 

removal of multiple anticancer drugs from cancer cells. This 

protein can be upregulated by ROS, which results in 

chemoresistance and prevents cell death (Galadari et al., 2017). 

Antioxidants Halliwell et al. were the first to define an antioxidant, 

in 1989 as "any substance that, present in low focuses contrasted 

with oxidizable substrates (sugars, lipids, proteins or nucleic 

acids), essentially delays or restrains the oxidation of the 

referenced substrates" (Halliwell et al., 1992). Antioxidants are 

molecules that combat oxidant activity, hence the name 

"antioxidant." Cell reinforcements can be characterized as, 

synthetic substances that can restrain or extinguish free 

revolutionaries, that are shaped as normal side-effects in the body 

during the natural cycle, and hence hindering oxidative harm 

(Chahal et al., 2018; Khurana and other, 2018). 

 

Endogenous antioxidants are antioxidants that are produced in the 

body through metabolism. Exogenous antioxidants, which are 

found in foods and supplements, can also be incorporated into the 

body. Moreover, there is additionally one more gathering of cell 

reinforcements that can be created artificially, which are generally 
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utilized in the food business (Mut-Salud et al., 2015). 
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extinguish free revolutionaries, that are shaped as normal side-

effects in the body during the natural cycle, and hence hindering 

oxidative harm (Chahal et al., 2018; Khurana and other, 2018). 

Endogenous antioxidants are antioxidants that are produced in the 

body through metabolism. Exogenous antioxidants, which are 

found in foods and supplements, can also be incorporated into the 

body. Moreover, there is additionally one more gathering of cell 

reinforcements that can be created artificially, which are generally 

utilized in the food business (Mut-Salud et al., 2015). 

 

Seaweeds as a Potential Source of Antioxidants 

Seaweed are a significant piece of Asian cooking and are rich in 

chemically significant bioactive mixtures. Carotenoids, 

polyphenols, phycobilin (phycoerythrin and phycocyanin), sulfated 

polysaccharides, and vitamins A and   C make up the majority of 

seaweed antioxidants (Cornish and Garbary, 2011). Sulfated 

polysaccharides and polyphenols from kelp are not like 

microalgae. The seaweed or macroalgal sulfated polysaccharides 

with antioxidant and anticancer activity that have received the 

most research are the carrageenans, fucoidans, ulvan, and 

porphyran. Additionally, non-sulfated polysaccharides like  alginic  

acid and laminarin, which are found in macroalgae, have 

antioxidative and antitumor properties (Venugopal, 2019). On 

account of polyphenolic compounds, the presence of 

phlorotannins, tetraphloretol, fucophlorethol, eckol, difucol, 

fucodiphlorethol, phloroglucinol, diphlorethol have been 
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accounted for from macroalgae (Mekinić et al., 2019). 

Phlorotannins, one of the antioxidant-rich phenolic compounds, are 

prevalent in brown algae and other macroalgae  (Montero et al., 

2017). According to Fleita et al., fatty acids from Laurencia 

papillosa (a red alga), sulfated polysaccharides from Pterocladia 

capillacea, meroterpenoids like sargachromanol, 

sargahydroquinoic, and sargaquinoic acid from Sargassum 

serratifolium, and sesquiterpenoids (isozonarol) from Dictyopteris 

2015; Kumagai and other, 2018; Omar and co., 2018; Lim et al., 

2019). Other than these, a scope of eatable ocean growth with 

antioxidative properties is consumed universally. 

 

CONCLUSION 

There have been a number of in vitro and in vivo studies on 

antioxidant therapies over the past few decades. These studies have 

shown that daily consumption of a specific dosage of antioxidant 

nutraceuticals has a negative correlation with cancer risk and 

increases treatment efficacy. However, randomized clinical trials 

have shown mixed results, which is considered a real problem for 

the widespread use of antioxidant supplements in cancer treatment. 

The dose, synergy, bioavailability of the antioxidants used, the 

health status of the patients, the type of cancer they have, their 

lifestyle, their tendency to take supplements, and the length of time 

the studies were conducted can all influence these inconsistent 

results. Consequently, more controlled and obvious clinical 

preliminaries with fresher methodologies should be directed to 

achieve a protected and viable cell reinforcement supplement 

framework in malignant growth treatment. In a similar vein, 

extensive research is required to investigate novel algae-derived 

antioxidant molecules. Priority should be given to purification 

methods and in vivo studies. The actual antioxidant compounds in 

several organic and aqueous extracts that have already 

demonstrated in vitro antioxidant and anticancer activities, as well 

as their mechanism of action on the cellular system and their 

capacity to enhance chemotherapeutic drugs, require additional 

research. 
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