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Abstract  

In spite of efforts to combat it, malaria in India continues to be a major threat to public health. Future 

trends in Malaria-related mortality in India were predicted using the Autoregressive Integrated Moving 

Average (ARIMA) model. We ran crucial diagnostic tests, including the Augmented Dickey-Fuller (ADF) 

test, the Autocorrelation Function (ACF), the Partial Autocorrelation Function (PACF), and the Box-

Jenkins approach, to make sure the model was accurate. The stationarity of the time series data and the 

optimal ARIMA model parameters could then be determined with the use of these tests. We were able to 

build a reliable forecasting model that sheds light on the future of Malaria-related mortality in India by 

combining various analytical tools. This study's findings will help in the development of preventative 

strategies and focused treatments to lessen the impact of Malaria in the country. 

Keywords: Malaria, ACF, PACF, Forecasting, Box-Test. 

Introduction 

Despite enormous attempts to restrict its spread and reduce its impact, malaria remains a major health 

concern in India. The World Health Organization (WHO) reports that numerous states in India are 

experiencing prolonged epidemics of malaria and high transmission rates. The disease disproportionately 

affects underprivileged groups, widening the gap between them and the rest of society. 

Distribution of mosquito nets, indoor residual spraying, and the use of anti-malarial medications are just 

a few of the methods that have been used over the years to curb the development of malaria in India. 

However, effective management and control of malaria remains a problem due to the complexity of the 

disease dynamics, which includes environmental factors and growing parasite resistance. 

Time series analysis has become an important method for studying the temporal dynamics of Malaria 

cases and deaths. In this regard, the Autoregressive Integrated Moving Average (ARIMA) model, the 

Autocorrelation Function (ACF), the Partial Autocorrelation Function (PACF), and the Augmented 

Dickey-Fuller (ADF) test have all gained popularity as powerful statistical tools for analyzing and 

forecasting Malaria incidence in India. 
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The ADF test is commonly used to evaluate the time series data for stationarity, which is critical for 

spotting patterns and trends that may compromise the accuracy of forecasting models. On the other hand, 

ACF and PACF aid in understanding the correlation structure within the time series data, which is crucial 

for selecting optimal parameters for time series models like ARIMA. 

We use a complete time series analysis strategy, including the ADF test, ACF, PACF, and the ARIMA 

model, to investigate the dynamics of Malaria cases in India. By doing so, we hope to offer a solid basis 

for deducing causal relationships and projecting future developments in Malaria in India. This study's 

results could be used to shape evidence-based policy and intervention methods, leading to more efficient 

and specific efforts to combat malaria across the country. 

Objective  

1. To analyze the historical trends of Malaria-related deaths in India, thereby gaining insights into 

the dynamics of the disease over the past few years. 

2. To conduct the Augmented Dickey-Fuller (ADF) test to determine the stationarity of the time 

series data, ensuring the validity of the subsequent time series analysis. 

3. To utilize the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) to 

identify the correlation structure within the Malaria-related deaths time series data, aiding in the 

selection of appropriate parameters for the ARIMA model. 

4. To apply the Box-Jenkins methodology to ascertain the suitability of the ARIMA model for 

forecasting Malaria-related mortality in India. 

5. To develop an accurate and reliable ARIMA model that can effectively forecast the future trends 

of Malaria-related deaths in India, thereby providing valuable insights for policymakers and 

healthcare authorities in designing targeted interventions and preventive strategies. 

6. To assess the effectiveness of the ARIMA model in predicting the potential trajectory of Malaria-

related deaths, thereby contributing to the existing knowledge on the dynamics of Malaria in India 

and facilitating evidence-based decision-making for disease control and prevention. 

Literature Review  

Zinszer, et al. (2012) A malaria scoping review that forecasts past work and future directions. There is a 

growing body of literature on malaria forecasting methods, and the goal of this review is to identify and 

assess malaria forecasting methods, including predictors. Using different forecasting methods on the same 

data, investigating the predictive ability of non-environmental variables, such as transmission-reducing 

interventions, and employing common forecast accuracy measures will allow malaria researchers to 

compare and improve models and methods, thereby improving the quality of malaria forecasting. 

Aregawi, et al. (2014) Time series analysis of malaria cases and deaths in hospitals, 2001– 2011, Ethiopia, 

and the effect of antimalarial interventions. Since 2004, the Ethiopian government and its partners have 

been deploying artemisinin-based combination therapies (ACT) and long-lasting insecticidal nets 

(LLINs). Malaria interventions, as well as trends in malaria cases and deaths, were evaluated at hospitals 
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in malaria transmission areas from 2001 to 2011. Malaria cases and deaths in Ethiopian hospitals 

decreased significantly between 2006 and 2011, as malaria interventions were scaled up. Changes in 

hospital visits, malaria diagnostic testing, or rainfall could not account for the decrease. Given Ethiopia’s 

history of variable malaria transmission, more data would be needed to rule out the possibility that the 

decrease is due to other factors. 

VarunKumar et al.(2014) Time Series Analysis of Delhi, India’s meteorological parameters can be used 

to forecast malaria cases. The goal of the study was to anticipate malaria incidences in Delhi, India, using 

meteorological characteristics as predictors. Malaria cases are declining overall each month. The data 

came from the record kept at the malaria clinic at the Rural Health Training Centre (RHTC), Najafgrah, 

Delhi, and covered the period from January 2006 to December 2013. Official sources were used to gather 

climate information, including monthly mean rainfall, relative humidity, and mean maximum temperature. 

An expert model of SPSS ver. 21 was employed at the Delhi Meteorological Centre to analyse the time 

series data. Results integrated regression analysis The best-fitting model was the moving average, ARIMA 

(0,1,1) (0,1,0) The time series data’s 72.5 percent variability may be explained by this. were discovered 

to be reliable indicators of the spread of malaria in the study region. malaria cases’ seasonal adjusted 

factors (SAF) August and September are the busiest months for the shows. 

Methodology  

ARIMA Model (p,d,q): 

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it 

wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary 

series always look the same in a statistical sense.  This last criterion means that it has maintained its 

autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal 

to saying that it has maintained its power spectrum over time.  The signal, if there is one, may be a pattern 

of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also 

include a seasonal component. A random variable of this kind can be considered (as is typical) as a 

combination of signal and noise, and the signal, if there is one, could be any of these patterns.  The signal 

is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that 

attempts to separate the signal from the noise in the data. 

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 
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It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging 

values of Y. An autoregressive model is essentially a special example of a regression model, and it may 

be fitted using software designed specifically for regression modeling.  For instance, a first-order 

autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the 

independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics and Y_LAG1 

in RegressIt, respectively).  Because there is no method to designate "last period's error" as an independent 

variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the 

data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the 

errors, then an ARIMA model is NOT the same as a linear regression model.  The fact that the model's 

predictions are not linear functions of the coefficients, despite the fact that the model's predictions are 

linear functions of the historical data, presents a challenge from a purely technical point of view when 

employing lagging errors as predictors.  Instead of simply solving a system of equations, it is necessary to 

use nonlinear optimization methods (sometimes known as "hill-climbing") in order to estimate the 

coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• 𝑌̂𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It consists 

of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 
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THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make 

it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of 

differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients 

of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns 

in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 

 

Analysis  

Several important conclusions can be drawn from the following time series data, which represents annual 

counts of Malaria cases in India from 1990 to 2019. Malaria case numbers have varied widely during the 

past three decades, reflecting the complexity of the disease's dynamics in the Indian setting.  

There is a great deal of variation in the time series, with both peaks and valleys having been seen. There 

is a clear decline in the early years, especially the 1990s, followed by a sharp increase in the mid-1990s 

and early 2000s. There is a notable peak around the year 2010, which coincides with a sharp increase in 

reported Malaria cases. 

These shifts illustrate the difficulties in managing Malaria in India and underline the necessity for strong 

and successful initiatives to lessen the disease's impact. Variability in the time series highlights the need 

for sophisticated analytic methods to discern underlying patterns and trends, which in turn paves the way 

for the creation of reliable forecasting models that may be used to take preventative actions against disease. 

The future trends of Malaria cases in India can be forecast through a thorough analysis using methods like 

the Augmented Dickey-Fuller (ADF) test, Autocorrelation Function (ACF), Partial Autocorrelation 

Function (PACF), and the Autoregressive Integrated Moving Average (ARIMA) model. To effectively 
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manage and reduce Malaria-related morbidity and death in the country, such insights can inspire evidence-

based policy decisions and focused interventions. 

 

Autocorrelation and partial autocorrelation functions were plotted to determine an optimal order of 

autoregressive and moving average polynomials, i.e., values of p and q. Non-stationarity is shown by the 

fact that nearly all autocorrelations lag, i.e., (n/4th)differ greatly from zero. India, using a series of non-

stationary data The progressive decrease in acfs, as depicted in Figure's acf plot, is indicative of non-

stationarity. This led to the conclusion that the series was not stationary. However, a strong spike at lag 1 

is displayed in Pacfs's graphic, suggesting the series may have an autoregressive component of order one. 

India's non-stationary data series were transformed into stationary ones by first diffusing the raw data. It 

was sufficient to get a suitable stationary series in India when we used the auto arima function, which 

displays various arima models and automatically data in stationary. The deaths' non-stationary behavior 

has recently been confirmed by the autocorrelation of death series. 
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The time series data of malaria cases in India from 1990 to 2019 was subjected to an Auto ARIMA 

analysis, and the ARIMA(1,0,0) model with a non-zero mean was found to be the best-fitting model based 

on the Akaike Information Criterion (AIC). Based on these findings, it appears that an ARIMA model 

consisting of a single autoregressive term and no moving average terms was selected by the Auto ARIMA 

algorithm as the best model for predicting Malaria cases in India. 

ARIMA Model Metric 

ARIMA(2,0,2) with non-zero mean 425.7218 

ARIMA(0,0,0) with non-zero mean 446.9475 

ARIMA(1,0,0) with non-zero mean 421.4402 

ARIMA(0,0,1) with non-zero mean 430.3628 

ARIMA(0,0,0) with zero mean 492.2069 

ARIMA(2,0,0) with non-zero mean 423.4159 

ARIMA(1,0,1) with non-zero mean 423.4086 

ARIMA(2,0,1) with non-zero mean 424.2877 

ARIMA(1,0,0) with zero mean 421.9822 

 

The AIC is a common model selection metric because it strikes a decent compromise between a model's 

goodness of fit and its complexity. The current Malaria case counts show no residual trends or seasonal 

patterns, as indicated by the ARIMA(1,0,0) model with a non-zero mean. 

Taking into account the regularities and dynamics represented by the time series data, this ARIMA model 

enables trustworthy forecasts for future Malaria cases in India. The selected model highlights the 

significance of the autoregressive term in capturing temporal dependency within the data, hence 

facilitating more precise forecasts and facilitating the development of focused policies for the control and 

prevention of Malaria in the country. 

In-depth analysis of the autoregressive integrated moving average (ARIMA) model with a non-zero mean 

revealed key insights into the coefficients uniquely defining the time series data of Malaria cases in India 

from 1990 to 2019. Estimates for the coefficient 'ar1' point to a large autoregressive effect, with an 81% 

impact on the current year's Malaria case count from the prior year's total. The mean value was also 
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calculated to be 640.8065, which indicates that there is a central tendency for the number of Malaria cases 

to oscillate around this value. 

Parameter Value 

Standard Error 

(s.e.) Parameter 

ar1 0.8100 0.1096 ar1 

mean 640.8065 215.5024 mean 

 

Mean s.e. was 215.5024, and the s.e. for the autoregressive coefficient was 0.1096. This indicates that 

there is a lot of room for error in calculating the autoregressive effect and the average value. In addition, 

the estimated variance of the model, sigma2 = 62539, suggests a sizable amount of volatility in the Malaria 

case counts, drawing attention to the intrinsic variability and complexity of the disease dynamics in India. 

As part of the evaluation of the overall goodness of fit, the log-likelihood of the model was found to be -

207.72. The ARIMA(1,0,0) model is superior to alternative models in this data set because it captures the 

most salient aspects of the time series data, as shown by the model's AIC (Akaike Information Criterion) 

value of 421.44. The model's applicability for anticipating Malaria cases in India was confirmed by 

computing AICc (corrected Akaike Information Criterion) and BIC (Bayesian Information Criterion) 

values of 422.36 and 425.64, respectively. 

Parameter Value 

Sigma^2 62539 

Log Likelihood -207.72 

AIC (Akaike Information Criterion) 421.44 

AICc (Corrected AIC) 422.36 

BIC (Bayesian Information Criterion) 425.64 
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The 95% confidence interval for the predicted point value in 2020 is (-306.0311, 674.2537), with the value 

at 184.1113. The difficulty in foreseeing the precise course of Malaria infections is reflected in the wide 

margin of error associated with the prognosis. Point predicted values for the years 2021–2029 show a 

rising trend, with wider confidence intervals indicating an expanding range of possible outcomes. 

Year Point Forecast Lower 95% CI Upper 95% CI 

2020 184.1113 -306.0311 674.2537 

2021 270.8737 -359.8949 901.6423 

2022 341.1530 -366.8689 1049.1750 

2023 398.0808 -356.3438 1152.5055 

2024 444.1935 -339.1855 1227.5726 

2025 481.5458 -320.2633 1283.3550 

2026 511.8020 -301.8730 1325.4770 

2027 536.3101 -285.0574 1357.6776 

2028 556.1622 -270.2137 1382.5380 
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In order to determine if there was any substantial autocorrelation in the prediction errors, the Box-Ljung 

test was run on the residuals of the predicted Malaria cases in India, with a lag value of 5. The p-value for 

a test requiring 5 degrees of freedom is 0.8748, with the X-squared value being 1.8098. At the 5% 

significance level, this p-value indicates that there is insufficient evidence to rule out the null hypothesis 

and conclude that the residuals are not significantly autocorrelated. 

Since the Box-Ljung test did not find statistical significance, it may be concluded that the ARIMA(1,0,0) 

model accurately predicts future values of the Malaria time series. In addition to supporting the validity 

of the selected ARIMA model and the robustness of the anticipated values, the lack of significant 

autocorrelation in the residuals highlights the success of the model in capturing the fundamental aspects 

of the Malaria cases in India. 

Conclusion 

In conclusion, the ARIMA (1,0,0) model-based thorough analysis of Malaria cases in India has shed light 

on the dynamics and future trends of the disease. This research used a number of statistical methods, such 

as the Augmented Dickey-Fuller (ADF) test, Autocorrelation Function (ACF), Partial Autocorrelation 

Function (PACF), and the Box-Jenkins approach, to guarantee the reliability and precision of the predicted 

values. 

The time series data of Malaria cases in India from 1990 to 2019 were found to be best matched by the 

ARIMA (1,0,0) model, which was determined using the Akaike Information Criterion (AIC). Insight into 

the impact of historical Malaria case counts on present levels was provided by the coefficient analysis, 

which showed a considerable autoregressive effect. 

Malaria cases in India are expected to increase gradually over the next decade, highlighting the ongoing 

difficulty this illness poses and the importance of continuous and well-targeted efforts to combat it. The 

Box-Ljung test on the forecast residuals yielded non-significant findings, further validating the ARIMA 

model's reliability and accuracy in predicting future Malaria trends. This indicates the independence and 

stability of the forecasted values. 
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