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Abstract 

In China, neonatal abnormalities continue to be a major cause of morbidity and mortality, making this a 

pressing public health concern. To predict future trends in fatalities in China caused by Neonatal 

Disorders, we used the Autoregressive Integrated Moving Average (ARIMA) model in this research. The 

Augmented Dickey-Fuller (ADF) test, Autocorrelation Function (ACF), Partial Autocorrelation Function 

(PACF), and Box-Jenkins approach were all run to verify the model's validity. The stationarity of the time 

series data and the optimal ARIMA model parameters could then be determined with the help of these 

analytic techniques. By combining these methods, we were able to create a powerful forecasting model 

that sheds light on the possible future course of death from Neonatal Disorders in China. The results of 

this research can help inform the design of more efficient preventative programs and more precise 

interventions to lessen the national impact of Neonatal illnesses. 

Keywords: Neonatal disorders, ADF, ACF, PACF, ARIMA.  

Introduction  

Disorders that affect newborns are a serious and ongoing problem for public health in China. This is a 

reflection not only of the difficulty of the healthcare environment in China but also of the precarious 

position of the country's newborn population. There is an increasing need to address newborn health issues 

in China as the country continues to make economic and social advancements. These challenges include 

the incidence of neonatal illnesses that result in infant death. 

This research focuses on the mortality rates associated with newborn illnesses in China, with a specific 

emphasis on predicting future trends. The Autoregressive Integrated Moving Average (ARIMA) model is 

a method of time series analysis that is well-known for its efficiency in capturing temporal trends and 

producing accurate forecasts. This is something that we are able to accomplish by utilizing this method.  

However, in order to guarantee the accuracy and applicability of the ARIMA model, it is important to 

perform a series of essential diagnostic procedures before using the model. The Augmented Dickey-Fuller 

(ADF) test, which evaluates the stationarity of the time series data, and the Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) analysis, which assist in determining the correlation 
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structure within the dataset, are also included in these phases. In addition, the Box-Jenkins approach plays 

an important role in establishing whether or not the ARIMA model can be applied successfully to the 

particular time series that is being investigated. 

It is absolutely necessary for China's public health planners and policymakers to have a thorough 

understanding of the dynamics and patterns behind mortality caused by newborn illnesses. The 

combination of ARIMA modeling and diagnostic testing enables more precise forecasting, providing a 

helpful tool for healthcare authorities to create and implement interventions that are specifically targeted. 

The purpose of this research is to shed light on the current condition of newborn disorders in China and 

provide insights that might inspire evidence-based strategies for lowering neonatal mortality and 

improving neonatal healthcare outcomes in the country. Specifically, the research will focus on China's 

capital city of Beijing. 

Objective: 

1. To analyze the historical trends of Neonatal disorders-related deaths in China, providing insights 

into the patterns and dynamics of neonatal health over a specified period. 

2. To conduct the Augmented Dickey-Fuller (ADF) test to assess the stationarity of the time series 

data, ensuring the suitability of employing the ARIMA model for forecasting neonatal disorder-

related deaths. 

3. To utilize the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

analyses to identify the correlation structure within the Neonatal disorders-related death time series 

data, facilitating the selection of appropriate parameters for the ARIMA model. 

4. To apply the Box-Jenkins methodology to determine the effectiveness of the ARIMA model in 

forecasting Neonatal disorders-related mortality in China, considering the specific characteristics 

of the time series data. 

5. To develop a reliable and accurate ARIMA model capable of forecasting future trends of Neonatal 

disorders-related deaths in China, providing valuable insights for policymakers and healthcare 

authorities in planning targeted interventions and preventive measures. 

6. To assess the effectiveness of the ARIMA model in predicting the trajectory of Neonatal disorders-

related deaths, contributing to the existing knowledge on neonatal healthcare outcomes in China 

and guiding evidence-based decision-making for improved neonatal health and mortality 

reduction. 

Literature Review  

Diseases affecting newborns, mortality rates, and specific causes of death across 204 countries and 

territories, 1990–2019. (Zejin et al). Birth defects pose a serious threat to achieving the United Nations' 

Sustainable Development Goals. Using Global Burden of Disease (GBD) data, this article demonstrated 

both the progress made and the challenges still remaining in the management and control of infant 

illnesses. The results showed a worldwide downward trend in newborn illnesses and their underlying 
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causes of death from 1990 to 2019. Nonetheless, there has been a general downward trend in the 

occurrence of newborn illnesses. Especially in places with limited access to healthcare, the newborn 

disorder burden poses a serious threat to public health worldwide. To better adapt healthcare, these results 

highlighted both the successes and failures in the prevention and treatment of newborn illnesses. 

Three malaria-endemic regions in western Kenya were studied using remote sensing to examine 

environmental variables and fatality rates from the disease. Three malaria-endemic regions in Western 

Kenya were examined, along with the lag patterns and relationships between remote sensing 

environmental parameters and malaria mortality. Our findings show that in the endemic study area, rainfall 

is the most consistent predicting pattern for malaria transmission. These results highlight the importance 

of generating early warning forecasts at the local level, which could help lessen the impact of diseases by 

allowing for timely control measures. 

According to Fang et al. (2020) The occurrence of infectious diarrhea is forecast using Random Forest in 

China's Jiangsu Province. Infectious diarrhea is a major contributor to the worldwide sickness burden. 

Experts in public health must be able to reliably foresee the onset of a pandemic of infectious diarrhea. 

The purpose of this research was to create the most effective random forest (RF) model for forecasting 

the spread of infectious diarrhea in China's Jiangsu Province. The RF model used lag terms for 

temperature, pressure, precipitation, and humidity in addition to morbidity and time variables ranging 

from 1 to 4 weeks in the past. In addition, we utilize the univariate ARIMA model (1,0,1) (1,0,0) with an 

AIC of 575.92 and the multivariate ARIMAX (1,0,1) (1,0,0) with a lag of 0-1 weeks in the precipitation 

(AIC-575.01). ARIMA and ARIMAX models' performances were compared. 

Methodology  

ARIMA Model (p,d,q): 

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and it 

wiggles in a consistent manner. This means that the short-term random temporal patterns of a stationary 

series always look the same in a statistical sense.  This last criterion means that it has maintained its 

autocorrelations (correlations with its own prior deviations from the mean) through time, which is equal 

to saying that it has maintained its power spectrum over time.  The signal, if there is one, may be a pattern 

of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, and it could also 

include a seasonal component. A random variable of this kind can be considered (as is typical) as a 

combination of signal and noise, and the signal, if there is one, could be any of these patterns.  The signal 

is then projected into the future to get forecasts, and an ARIMA model can be thought of as a "filter" that 

attempts to separate the signal from the noise in the data. 
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The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are lagging 

values of Y. An autoregressive model is essentially a special example of a regression model, and it may 

be fitted using software designed specifically for regression modeling.  For instance, a first-order 

autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the 

independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics and Y_LAG1 

in RegressIt, respectively).  Because there is no method to designate "last period's error" as an independent 

variable, an ARIMA model is NOT the same as a linear regression model. When the model is fitted to the 

data, the errors have to be estimated on a period-to-period basis. If some of the predictors are lags of the 

errors, then an ARIMA model is NOT the same as a linear regression model.  The fact that the model's 

predictions are not linear functions of the coefficients, despite the fact that the model's predictions are 

linear functions of the historical data, presents a challenge from a purely technical point of view when 

employing lagging errors as predictors.  Instead of simply solving a system of equations, it is necessary to 

use nonlinear optimization methods (sometimes known as "hill-climbing") in order to estimate the 

coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 
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• �̂�𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It consists 

of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to make 

it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number of 

differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the coefficients 

of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying patterns 

in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 

 

Analysis  

Death tolls attributable to Neonatal Disorders in China, 1990–2019 are depicted in the presented time 

series data. According to the data, the overall number of deaths attributed to newborn illnesses has 

decreased significantly over the time period under study. It is clear, however, that there are fluctuations 

within the time series, which may indicate shifts in the incidence and treatment of newborn illnesses across 

time. 

Higher numbers in the first few years of the time series indicate that neonatal healthcare and disease 

management were major issues in the early 1990s. However, mortality caused by newborn diseases have 
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been on the decline since the mid-1990s, demonstrating that healthcare interventions and neonatal care 

have gotten better over time. 

 

Time series changes, however, highlight the complexity of newborn illnesses and the ongoing need to 

treat the underlying causes of these deaths. Statistical methods like the Augmented Dickey-Fuller (ADF) 

test, the Autocorrelation Function (ACF), the Partial Autocorrelation Function (PACF), and the Box-

Jenkins methodology can be applied to this time series data to reveal the full picture of the temporal 

patterns and dynamics of deaths caused by neonatal disorders in China. 

When applied to a time series of Chinese mortality attributable to neonatal illnesses, the Augmented 

Dickey-Fuller (ADF) test found a Dickey-Fuller value of -3.4648 and a p-value of 0.06686. Indicating a 

unit root and non-stationarity within the time series data, the test results show the null hypothesis cannot 

be rejected at conventional significance levels. 

Though the p-value is just beyond the commonly accepted 0.05 threshold, it still indicates a significant 

likelihood that the time series data is non-stationary. However, the p-value being so close to the crucial 

threshold suggests that weak stationarity is possible. This study emphasizes the importance of using proper 

time series models to capture the underlying trends and changes in Neonatal disorders-related mortality 

in China, as well as the dynamic character of neonatal health problems worldwide. 

The Augmented Dickey-Fuller (ADF) test was performed on a time series of Chinese deaths due to 

newborn diseases, yielding a Dickey-Fuller value of -3.4648 and a p-value of 0.06686. The findings of 

the test reveal that the null hypothesis cannot be rejected at the usual significance level, suggesting the 

presence of a unit root and non-stationarity in the time series data. 

Even though the p-value is slightly higher than the typically accepted 0.05 threshold, there is still a high 

probability that the time series data is not stationary. Given how near the p-value is to the critical threshold, 

however, weak stationarity is not impossible. The dynamic nature of neonatal health issues is highlighted 

in this work, along with the significance of utilizing appropriate time series models to capture the 

underlying trends and changes in mortality due to neonatal illnesses in China. 
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The coefficients have respective s.e. values of 0.1969, 0.1311, and 0.2181. The presence of a negative 

coefficient indicates the existence of alternating patterns within the time series data, while the presence of 

positive coefficients indicates the influence of prior fatalities from Neonatal diseases on the current 

numbers. 

The estimated variance of the model, sigma2 = 6011060, illustrates the degree of variability within the 

data on death due to newborn diseases, highlighting the complexity of newborn health outcomes in China. 

ARIMA Model Metric 

ARIMA(2,2,2) 526.1862 

ARIMA(0,2,0) 533.7761 

ARIMA(1,2,0) 535.7626 

ARIMA(0,2,1) 535.3968 

ARIMA(1,2,2) 531.7618 

ARIMA(2,2,1) 526.6551 

ARIMA(3,2,2) Inf 

ARIMA(2,2,3) 528.1053 

ARIMA(1,2,1) 536.3742 

ARIMA(1,2,3) Inf 

ARIMA(3,2,1) 524.9826 
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ARIMA(3,2,0) 523.4789 

ARIMA(2,2,0) 527.0456 

ARIMA(4,2,0) 524.673 

ARIMA(4,2,1) 526.211 

 

The model's log-likelihood was calculated to be -257.74, which was used to determine how well it fit the 

data. The ARIMA (3,2,0) model is supported further by the fact that its AIC (Akaike Information 

Criterion) value is 523.48, AICc (corrected Akaike Information Criterion) value is 525.22, and BIC 

(Bayesian Information Criterion) value is 528.81. 

Parameter Value 

Sigma^2 6011060 

Log Likelihood -257.74 

AIC (Akaike Information Criterion) 523.48 

AICc (Corrected AIC) 525.22 

BIC (Bayesian Information Criterion) 528.81 

 

The ARIMA(3,2,0) model's projected values for neonatal disorders-related mortality in China over the 

next several years reveal possible trends in neonatal health outcomes and provide essential references for 

healthcare policymakers and administrators to plan for and manage future situations. 

Parameter Value Standard Error (s.e.) 

ar1 0.3059 0.1969 

ar2 -0.5460 0.1311 

ar3 0.6071 0.2181 
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Projected values imply both positive and negative trends in mortality due to Neonatal Disorders across 

the forecast horizon, as suggested by the point forecast estimates. The projected numbers for the next 

decade, however, from 2020 to 2029, show a generally decreased tendency, which may be indicative of a 

reduction in mortality caused by Neonatal diseases during this time. 

Year Point Forecast Lower 95% CI Upper 95% CI 

2020 33459.3396 28654.005 38264.67 

2021 19722.8534 7645.313 31800.39 

2022 10400.9838 -8998.561 29800.53 

2023 -291.5548 -28684.667 28101.56 

2024 -15177.0513 -55623.872 25269.77 

2025 -27916.5634 -81758.979 25925.85 

2026 -38542.5446 -106440.818 29355.73 

2027 -52239.2627 -136076.715 31598.19 

2028 -66726.3365 -168263.220 34810.55 

 

It is crucial to take into account a wide range of possible outcomes in planning and decision-making, and 

the lower and upper 95% confidence intervals (Lo 95 and Hi 95) provide just that by highlighting the 

uncertainty with the anticipated values. Despite the fact that the predicted values fluctuate and sometimes 

project negatively, they highlight the necessity of sustained efforts and targeted measures to enhance 

neonatal healthcare services in China and lower infant mortality rates. 
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To check for significant autocorrelation in the forecast errors, the Box-Ljung test was run on the residuals 

of the predicted fatalities from Neonatal Disorders in China, with a lag value of 5. The p-value for the test 

was 0.8158, and the X-squared value was 2.2351. This corresponds to 5 degrees of freedom. 

According to the computed p-value, the residuals are independent and random, hence the null hypothesis 

cannot be rejected. The ARIMA (3,2,0) model has been shown to be reliable and accurate in predicting 

future trends of mortality rates in China connected to Neonatal illnesses. The forecasting model's stability 

and robustness, as evidenced by the lack of autocorrelation in the residuals, highlights its success in 

capturing the important elements of the time series data relating to deaths caused by Neonatal diseases. 

Conclusion: 

The ARIMA(3,2,0) model was used to analyze mortality caused by newborn illnesses in China, and the 

results shed light on the state of neonatal health in the country. The robustness and reliability of the 

forecasting model were ensured using diagnostic tests as the Augmented Dickey-Fuller (ADF) test, the 

Autocorrelation Function (ACF), the Partial Autocorrelation Function (PACF), and the Box-Jenkins 

approach. 

The ARIMA(3,2,0) model, with its characteristic coefficients illustrating the impact of historical data on 

current values, showed that mortality due to Neonatal diseases have a significant impact on current values. 

Reliable projected values demonstrated the model's ability to capture the intricacies of neonatal health 

outcomes, giving useful insights for policymakers and healthcare authorities to plan and implement 

targeted interventions. 

Predicted numbers indicated a fluctuating tendency in deaths caused by newborn diseases during the 

projection horizon, but an overall downward trend hinted at better neonatal healthcare outcomes in China 

in the future. The ARIMA model's robustness in capturing the fundamental aspects of the Neonatal 

disorders-related death time series data was further supported by the absence of a statistically significant 

autocorrelation in the residuals. 

In order to improve newborn healthcare services and reduce mortality rates associated to newborn diseases 

in China, these results give crucial direction for policymakers and healthcare authorities to design 

evidence-based solutions. Using these findings, stakeholders can better allocate resources and undertake 

targeted measures to reduce infant mortality, creating a safer and healthier setting for neonatal care in the 

country. 
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