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Abstract 

Linear Feedback Shift Registers (LFSRs) are integral to various medical applications, particularly in 

cyclic redundancy check (CRC) operations and BCH encoders. This thesis establishes a mathematical 

proof demonstrating the feasibility of transforming LFSR circuits into equivalent state space 

formulations, aiming to enhance their performance in medical data processing. The proposed 

transformation accelerates processing speed compared to serial architectures, albeit with increased 

hardware overhead. Applicable across all irreducible polynomials used in medical data integrity 

verification and encoding, a new formulation is suggested to adapt LFSRs into CRC filter structures. 

Moreover, a novel high-speed parallel LFSR architecture is introduced, emphasizing its suitability for 

medical data processing. Leveraging parallel Infinite Impulse Response filter design, pipelining, and 

retiming algorithms, this architecture surpasses previous designs by incorporating both feedforward and 

feedback paths. Further improvements involve combined parallel and pipelining techniques to mitigate 

the fanout effect in extended generator polynomials. The proposed scheme offers universal applicability 

to any generator polynomial, providing comparable critical path performance to previous designs at a 

reduced hardware cost. 

Keywords: Linear Feedback Shift Register, Infinite Impulse Response, cyclic redundancy check, BCH 

encoders. 

1. Introduction 

 Communication standards continue to be defined that push the bar higher for throughput. For example, 

10 Gbps IEEE 802.3ak was standardized in 2003, and recently 100 Gbps IEEE 802.3ba is standardized in 

2010. In order to support these high throughput requirements at a reasonable frequency, parallel 

architectures are required. At the same time, the power consumption and hardware overhead should be 

kept to a minimum. The research in this thesis is directed towards designing high throughput architectures 

for two key components of the modern communication standards, CRC/BCH encoders and Fast Fourier 

Transform (FFT). Cyclic Redundancy Check (CRC) is widely used in data communications and storage 

devices as an efficient way to detect transmission errors. Examples of digital communication standards 

that employ CRC include Asynchronous Transfer Mode (ATM), Ethernet (IEEE 802.3), WiFi (IEEE 

802.11) and WiMAX (802.16). The Bose-ChaudhuriHochquenghem (BCH) codes are one of the most 

powerful algebraic codes and are extensively used in modern communication systems. Compared to 

Reed-Solomon codes, BCH codes can achieve around additional 0.6dB coding gain over the additive 

white Gaussian noise (AWGN) channel with similar rate and codeword length. Many applications of 

BCH codes such as long-haul optical communication systems used in International Telecommunication 
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Union-Telecommunication Standardization sector (ITU-T) G.975, magnetic recording systems, solid-state 

storage devices and digital communications require high throughput as well as large error correcting 

capability. Hence, BCH codes are of great interest for their efficient and high speed hardware encoding 

and decoding 1 2 implementation. The BCH encoders and CRC operations are conventionally 

implemented by a linear feedback shift register (LFSR) architecture. While such an architecture is simple 

and can run at high frequency, it suffers from serial-in and serial-out limitation. In optical communication 

systems, where throughput over 1 Gbps is usually desired, the clock frequency of such LFSR based 

encoders cannot keep up with data transmission rate and thus parallel processing must be employed. 

Doubling the data width, i.e two parallel architecture doesn’t double the throughput, the worst case timing 

path becomes slower. Since the parallel architectures contain feedback loops, pipelining cannot be applied 

to reduce the critical path. Another issue with the parallel architectures is hardware complexity.  

2 Literature survey  

In order to meet the increasing demand on processing capabilities, much research has been carried out on 

parallel architectures of LFSR for CRC and BCH encoders. In [5], first serial to parallel transformation of 

linear feedback shift register was described and was first applied to CRC computation in [6]. Several 

other approaches have been 6 recently presented to parallelize LFSR computations [7], [8], [9], [10].  

A novel parallel CRC architecture based on state space representation is proposed in the literature. The 

main advantage of this architecture is that the complexity is shifted out of the feedback loop. The full 

speedup can be achieved by pipelining the feedforward paths. A state space transformation has been 

proposed to reduce complexity but the existence of such a transformation was not proved and whether 

such a transformation is unique has been unknown so far. In this thesis, we present a mathematical proof 

to show that such a transformation exists for all CRC and BCH generator polynomials. We also show that 

this transformation is non-unique. In fact, we show the existence of infinite such transformations and how 

these can be derived. We then propose novel schemes based on pipelining, retiming and look ahead 

computations to reduce the critical path in the parallel architectures based on parallel and pipelined CRC 

filter design. 

3 Basic Linear Feedback Shift Registers 

 CRC computations and BCH encoders are implemented by using Linear Feedback Shift Registers 

(LFSR)[1], [2], [3]. A sequential LFSR circuit cannot meet the speed requirement when high speed data 

transmission is required. Because of this limitation, parallel architectures must be employed in high speed 

applications such as optical communication systems where throughput of several gigabits/sec is required. 

LFSRs are also used in conventional Design for Test (DFT) and Built in Self Test (BIST) [4]. LFSRs are 

used to carry out response compression in BIST, while for the DFT, it is a source of pseudorandom binary 

test sequences. A basic LFSR architecture for Kth order generating polynomial in GF(2) is shown in Fig. 

2.1. K denotes the length of the LFSR, i.e., the number of delay elements and g0, g1, g2, ..., gK represent 

the coefficients of the characteristic polynomial. The characteristic polynomial of this LFSR is 

g(x) = g0 + g1x + g2x 2 + ... + gKx K 
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Figure 1: Basic LFSR architecture 

where g0, g1, g2, ..., gK ∈ GF(2). Usually, gK = g0 = 1. In GF(2), multiplier elements are either open 

circuits or short circuits i.e., gi = 1 implies that a connection exists. On the other hand gi = 0 implies that 

no connection exists and the corresponding XOR gate can be replaced by a direct connection from input 

to output. Let u(x), for x = 0, 1, ...N − 1, u(x) ∈ GF(2), 0 ≤ n ≤ N − 1 be input sequence of length N. Both 

CRC computation and BCH encoding involve the division of the polynomial u(x)x K by g(x) to obtain the 

remainder, Rem(u(x)x K)g(x) . During the first N clock cycles, the N-bit message is input to the LFSR 

with most significant bit (MSB) first. At the same time, the message bits are also sent to the output to 

form the BCH encoded codeword. After N clock cycles, the feedback is reset to zero and the K registers 

contain the coefficients of Rem(u(x)x K)g(x) . In BCH encoding, the remaining bits are then shifted out 

bit by bit to form the remaining systematic codeword bits. The throughput of the system is limited by the 

propagation delay around the feedback loop, which consists of two XOR gates. We can increase the 

throughput by modifying the system to process some number of bits in parallel. 

4.proposed method 

4.1 State Space Representation of LFSR 

A parallel LFSR architecture based on state space computation has been proposed in [13]. The LFSR 

shown in Fig. 1 can be described by the equation x(n + 1) = Ax(n) + bu(n); n >= 0 

with the initial state x(0) = xo. The K-dimensional state vector x(n) is given by  x(n) = [x0(n) 

x1(n)...xK−1(n)]T and A is the K × K matrix given by 

 

The K × 1 matrix b is  b = [g0 g1...gK−1] T . 

The output of the system is the remainder of the polynomial division that it computes, which is the state 

vector itself. We call the output vector y(n) and add the output equation y(n) = Cx(n) to the state equation 

in (2.1), with C equal to the K × K identity matrix. The coefficients of the generator polynomial g(x) 

appear in the righthand column of the matrix A. Note that, this is the companion matrix of polynomial 

g(x) and g(x) is the characteristic polynomial of this matrix. The initial state xo depends on the specific 

definition of the CRC for a given application. 

4.2 State Space Transformation 
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A linear transformation has been proposed [13] to reduce the complexity in the feedback loop. The state 

space equation of L-parallel system with an explicit output equation is described as  

x(mL + L) = ALx(mL) + BLuL(mL); y(mL) = CLx(mL)  

where CL = I, the K × K identity matrix. The output vector y(mL) is equal to the state vector which has 

the remainder at m = N/L. Consider the linear transformation of the state vector x(mL) through a constant 

non-singular matrix T, i.e., x(mL) = Txt(mL) 

Given T and its inverse, we can express the state space equation (2.5) in terms of the state vector xt(mL), 

as follows: xt(mL + L) = ALtxt(mL) + BLtuL(mL); y(mL) = CLtxt(mL) 

where ALt = T −1ALT; BLt = T −1BL; CLt = T 

 

Figure 2: Modified LFSR Architecture using state space transformation 

 

Figure 3: Modified feedback loop of Fig. 2 

and T is the transformation matrix. The parallel LFSR architecture after the transformation is shown in 

Fig. 2 and the modified feedback loop in Fig. 3. We can observe from the figure that if ALt is a 

companion matrix, then the complexity of the feedback loop will be same as that of the original LFSR. If 

there exists a T such that ALt is a companion matrix, then the complexity in the feedback loop comes 

down. It is evident that (2.6) represents a similarity transformation and we can state that there exists a T 

such that ALt is a companion matrix if and only if AL is similar to companion matrix. The following 

theorem proves that AL is similar to a companion matrix provided the generator polynomial is 

irreducible. The latter condition is met for all CRC and BCH codes. 

5. Simulation Results 
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fig 4 Design Summary 

 

 

 

Fig 5 RTL SCHEMATIC 

 

Fig 6 LFSR Based CRC-32 
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Fig 7 Time delay 

Conclusion  

This paper has presented a complete mathematical proof to show that a transformation exists in state 

space to reduce the complexity of the parallel LFSR feedback loop. This leads to a novel method for high 

speed parallel implementation of linear feedback shift registers which is based on parallel CRC filter 

design. Our design can reduce the critical path without increasing the hardware cost at the same time. The 

design is applicable to any type of LFSR architecture. Further we show that using combined pipelining 

and parallel processing techniques of CRC filtering, critical path in the feedback part of the design can be 

reduced. The large fan-out effect problem can also be minimized with some hardware overhead by 

retiming around those particular nodes. 
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