An In vitro study to compare the effect of chamfer and shoulder on the Fracture resistance of all ceramic Restorations

Dr. Suneel G Patil¹, Dr. Sankalp Verma² and Dr. Shaabh Kumar³

¹Associate Professor, Department of Dentistry, Karnataka Institute of Medical Sciences, Hubli,

Karnataka.

²Professor, Department of Oral Medicine and Radiology, Mithila Minority dental college & Research Centre, Darbhanga,Bihar.

³Professor, Department of Prosthodontics, Teerthankar Mahavir Dental College, Moradabad.

Corresponding - sunilpatil2000@yahoo.com

ABSTRACT

Background and aim: The fracture of all ceramic restorations due to the occlusal and lateral forces is one of the major problems these days. This problem arises mainly due to high intensity of masticatory forces in the molar and premolar area along with the brittle nature of ceramic restorations. The aim of this present in-vitro study is to compare the fracture resistance of chamfer and shoulder margins under a cyclic load of Inceram crowns.

Materials and methods: First maxillary premolar without any cracks and caries extracted for orthodontic purposes were included in the present study. Using appropriate burs, 50 in. chamfer and 90 in. shoulder margins were prepared on the tooth. 10 impressions were taken using a polyvinylsiloxane and then dies were fabricated by pouring with epoxy resin. Again 10 polyvinylsiloxane impressions were made and ten epoxy resin dies were created from these impressions. After setting the stone dies were coated with a space liner and were sent to a dental laboratory where the alumina cores with 0.5 mm thickness were fabricated (Vita, Germany). The \Box t of each alumina core on their respective epoxy resin was veri \Box ed under a 2.5stereomicroscope. Using a universal testing machine called Instron, mechanical testing was carried out.

Result: The mean \pm standard deviation for the resistance of fracture came out to be 610.1880 \pm 58.79526 N for chamfer margin and 502.7270 \pm 105.83233 for that of shoulder margin. The difference between the two groups was statistically signi \Box cant as revealed by Student's t-test (p=0.011).

Conclusion: Fracture caused by the occlusal and lateral masticatory forces seems to be one of the main problems of all ceramic restorations. These restorations can sometimes lead to unesthetic appearance and many biologic problems because of the metal present in these restorations

Keywords: Chamfer; Shoulder; Fractureresistance; Allceramic; Inceram

INTRODUCTION

One of the major problems of the all ceramic restorations is their probable fracture against the occlusal and lateral force [1]. The prominent restorations contain metal which brings about toxic, chemical and allergic affects. The difference between their color and natural tooth is another problem. Most of the people prefer tooth color crowns. All ceramic crowns have esthetics and biocompatibility [2]. In the past few years such restorations have been used in the restorations of posterior teeth. However, some crown fractures due to the relatively low mechanical resistance of ceramic crowns have become more apparent. This is mainly due to the magnitude of the biting forces applied on the premolar and molar teeth and to the inherent brittleness of ceramics [3,4]. Ceramic materials are particularly susceptible to the tensile stresses, and mechanical resistance is also strongly in uenced by the presence of super□cial □aws and internal voids. Such defects may represent the sites of crack initiation. This phenomenon may be in uenced by different factors such as marginal design and thickness of the restoration, residual processing stress, magnitude and direction and frequency of the applied load, elastic modulus of the restoration components, restoration-cement interfacial defects, and oral environmental effects [5]. In one research, \square nite element analysis (FEA) wasused to study the stress distribution during mastication in maxillary second premolars restored with metal-ceramic crowns and compared them to non-restored teeth. They registered high stresses at the cervical line of the restored teeth within the dentin-metal interface and within the ceramic-metal interface [6]. The FEA method was used to study the stress distribution in the lower Irst molar restored with all ceramic crowns. The result of that study suggested the concentration of stress at the cervical site [7].

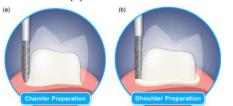


Fig. 1. (a) Chamfer preparation and (b) shoulder preparation.

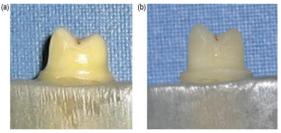


Fig. 2. 50 in. chamfer margin was prepared on an extracted first maxillary premolar (a) the same tooth was converted into 90 in. shoulder margin (b).

The hypothesis of the present study is the effect of marginal design of crowns on an improved mechanical performance of Inceram crowns, from aclinical point of view. Such a condition can be achieved preparing a chamfer margin in crowns instead of a shoulder margin (Fig. 1). Sadan et al. proposed that both of these types of \Box nishing lines are considered to be adequate for the tooth [8]. But Di Lorio et al. suggested that the shoulder margin could improve the biomechanical performance of single crown alumina restorations [9]. De Jager et al. discovered that for long lasting restorations in posterior region it is advisable to make a chamfer with collar preparation [10]. Cho et al. found out that the fracture strength of chamfer \Box nishing line (0.9 and 1.2 mm) was greater than 1.2 mm rounded end shoulder and 1.2 shoulder Inishing line [11]. Potiketetal.suggestedthata1 mm deep shoulder Inishing line with a rounded internal line angle has good fracture strength for the natural teeth restored with all ceramic crowns [12]. Rammersberg et al. discovered that a minimally invasive 0.5 mm axial chamfer tooth preparation has the greatest stability for posterior metal free crowns [13].

The aim of the present in vitro study is to compare the resistance to fracture under a cyclic load applied to chamfer and shoulder margins of Inceram crowns.

2. MATERIALS AND METHODS

A caries-free □rst maxillary premolar extracted for orthodontic reasons (without any crack) was selected for the present study. The tooth was prepared with a 50 in. chamfer margin (0.7 mm depth) using a torpedo diamond bur [14,15] (Fig. 2). For more strength resistance occlusal surface was prepared with a cusp shaped [16]. Ten impressions were made using a polyvinylsiloxane (Zhermack, Italy). The impressions were poured using Epoxy resin CW2215 (Hunstman, Germany) [17] to create ten identical resin dies with a 50 in. chamfer margin (Fig. 3). Afterwards, the tooth was retrieved and the 50 in. chamfer was converted into a 90 in. shoulder using a cylindrical diamond bur (1 mm depth) [14,15] (Fig. 2). Again 10 polyvinylsiloxane impressions (Fig. 3).

Impressions of each epoxy resin dies were taken using apolyvinylsiloxane impression material and poured using die stone. After setting the stone dies were coated with a space liner and were sent to a dental laboratory [18] where the alumina cores with 0.5 mm thickness were fabricated (Vita, Germany) [19]. The \Box to f each alumina core on their respective epoxy resin was veri \Box ed under a 2.5stereomicroscope. Each core was cemented using a resin luting agent, Panavia F2.0 (Kuraray, Japan) on the decontaminated epoxy resin dies. After cementation, excess luting agent was removed and samples were stored in a saline solution at room temperature for 24h.

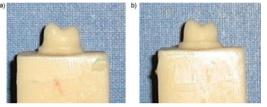


Fig. 3. Impressions from the \Box rst maxillary premolar with 50 in. chamfer margin were poured with epoxy resin and make epoxy resin dies with chamfer margin (a) impressions with 90 in. shoulder margin were poured with epoxy resin and make epoxy resin dies with shoulder margin (b).

Fig. 4. Universal testing machine (instron) with 5 mm diameter stainless steel ball using for applying load on the alumina cores.

Mechanical tests were carried out using a universal testing machine (Instron). Each specimen underwent a load with a minimal load of 5N with a 5 mm diameter stainless steel ball (Fig. 4). The load was applied at the center of the occlusal surface along the long axis with a crosshead speed of 1 mm/min until fracture occurred [20]. The fracture load data were automatically recorded using Nexigion software. Samples were investigated from the point of view and steriomicroscope of the origin of the failure (Fig. 5).

For statistical analysis data we collected, a mean SD was calculated for each group. The difference between groups was tested for statistical signi \Box cance with the Student's t-test at a signi \Box cance level p <0.05.

3. RESULTS

The mean SD offracture resistancewere 610.18 ±58.79N

(chamfermargin)and502.72 \pm 105.83N(shouldermargin).The Student's t-test revealed a statistically signi \Box cant difference between the groups (p =0.012) (Tables 1 and 2).

Error-bar graph shows the mean fracture resistance of shoulder margin and chamfer margin with 95% con dence interval (Fig. 6, graph). Coeffcient Of variation (SD/mean = CV) in shoulder margin is more than chamfer margin.

Kaplan–Meir graph shows the cumulative distribution of fracture/load in the chamfer and shoulder \Box nishing lines (Fig. 7, graph).

4. DISCUSSION

One of the major problems of all ceramic restorations is their probable fracture against the occlusal and lateral force [1]. The prominent restorations contain metal which brings about biologic problems and have no esthetical appearance [2]. This study that was a comparison between the resistance to fracture under a cyclic load applied to chamfer and shoulder margins of Inceram crowns showed that the mean fracture resistance of chamfer margin is 610.18N and the shoulder margin is 502.72N. The Student's t-test revealed a statistically signi ant difference between the groups and fracture resistance of chamfer margin was more than shoulder margin. Elastic modulus of the supported materials of the core affected the fracture resistance of the core [21]. For this reason, in this study, we use epoxy resin dies that are much better than brass dies [22]. Another difference from clinical conditions is the unknown nature of the bonding between luting agent and die material. It is reasonable to suppose that the presence of a hybrid layer at the dentin-cement interfaces the biomechanical behaviour of the core/supporting die system. However, both of these factors equally in uenced the samples in the present study therefore it is possible to make a comparison between the two groups. Fracture resistance of the two groups are more than biting forces [23] so we could use both marginal designs successfully in the posterior all ceramic crowns, and it is a very good replacement for PFM crowns. We use resin cements for cementation, hence we have a strong unity in the margins that make strength against the fracture [24]. But there is a statistically signi cant difference between the two groups that reveals that the chamfer margin has more fracture resistance than shoulder margin. This may be because of a much better marginal Dtness in chamfer margin that happens because of a curve in the chamfer □nishing line and that causes a better spread in the load. However, we do not have such a condition in a 90 in. shoulder margin that have sharp endings. It seams that shoulder margin has the worse marginal Dtness in all ceramic materials because as illustrated in Fig. 8.

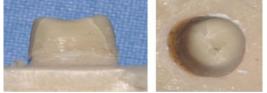
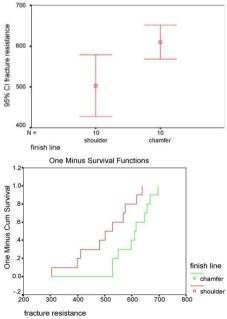
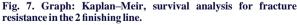


Fig. 5. Fracture areas on the alumina core on its respective epoxy resin die after applying the load.


 Table 1: Fracture resistance of shoulder edge and chamfer edge alumina cores.


Finish line	N	Mean		Std. deviation	Std. error mean
Fracture resistance Shoulder	10	502.7270		105.83233	33.46712
Chamfer	10	610.1880		58.79526	18.59269
Table 2 p-Value.					
		t-Test for equality of means			
		t	df	Sig. (two- tailed)	Mean difference
Fracture resistance Equal variances assumed		2.807	18	0.012	107.4610
Equal variances not assumed		2.807	14.072	0.014	107.4610
				H	

Journal of Cardiovascular Disease Research

 $d = D \cos b$ and $d = D \sin a$ [14], D is vertical discrepancy between the restoration and tooth and d is horizontal discrepancy between the restoration and tooth.

In addition we know that horizontal discrepancy is more important than vertical discrepancy, which is the real gap between the restoration and teeth. The lower horizontal discrepancy makes better Iness between the restoration and teeth. In chamfer margin $d = D \cos 50$ so d = D 0.64 (horizontal discrepancy <vertical discrepancy) but in the shoulder margin $d = D \cos 0$ so d = D furthermore in this situation we have the worse marginal
these in addition there is not a strong unity between the restoration and teeth that makes a lower fracture resistance than the chamfer margin does. In the studies that we have done on the marginal
these two
nishing lines we found that marginal tness in chamfer margin is 27 mm and in shoulder margin it is 43 mm so it is vivid to have more fracture resistance in chamfer margins. In other words in chamfer nishing line we have an angled cut of enamel that makes the higher width of enamel in exposure to etch and bonding, so we have strong bonding and unity between the restoration and teeth that makes higher fracture resistance than shoulder margin because as we know in this nishing line we have the lower width of enamel that is important in the bonding of the restoration and teeth. As a result, the present study indicates that chamfer Dishing line could have more fracture resistance than shoulder Dishing line. Furthermore, good tness on the occlusal surface would greatly enhance strength resistance against fracture force, and a gap directly under where the pressure is being applied (between the base die and the core) could in uence the fracture resistance. This these is different from the marginal Interest and we have this vertical discrepancy (D) in the occlusal surface. In similar studies we found that I tness of the alumina cores in the occlusal surfaces is about 60 mm in both of the samples. So in our study this gap is the same in all dies because we did not change the occlusal surface therefore this factor equally in uenced the samples hence it is possible to make a comparison between the two groups.

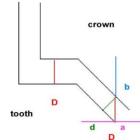


Fig. 8. Discrepancies between the restoration and tooth, in shoulder margin D = d so we have the worse marginal fitness.

5. CONCLUSION

Both of the marginal designs have a strong fracture resistance that is more than biting forces so we could use the both. But because of the more fracture resistance of chamfer margin, this Dishing line is recommended and could improve the biomechanical performance of posterior single alumina restorations.

REFERENCES

- Cunningham J. Dental material, 20th ed., London: McGraw-Hill; 2005. p. 567-89
- [2] Ferrance JL. Using posterior composites appropriately. J Am Dent Assoc 1992;123(53-8):663-6.
- [3] Etemadi S, Smales RJ. Survival of resin-bonded porcelain veneer crowns placed with and without metal reinforcement. J Dent 2006:34:134-45. Mclaren EA, White SN. Survival of Inceram crowns in a private practice: a prospective [4]
- clinical trial. J Prosthet Dent 2000;83:216–22. Webber B, McDonald A, Knowles J. An in-vitro study of the compressive load at [5]
- fracture of proceraAll ceramic crowns with varying thickness of veneer porcelain. J Prosthet Dent 2003;89:154-60. [6]
- Aykul H, Toparli M, Dalkiz M. A calculation of stress distribution in metal-porcelain crowns by using three-dimensional nite element method. J Oral Rehabil 2002;29:381-6.
- Imanishi A, NaKamura T, Ohyama T, Nakamura T. 3D
 inte element analysis of all ceramic posterior crowns. J Oral Rehabil 2003;30:818–22. [7]
- Sadan A, Blutz MB, Lang B. Clinical consideration for densely sintered alumina and zirconia restorations. Part 1. Int J PeriodontRestor Dent 2005;25:213–9. [8]
- Di Iorio D, Murmura G, Orsini G, Scarano A, Cupatis. Effect of margin design on the [9] fracture resistance of proceraAll ceramic cores: an invitro study. J Contemp Dent Pract 2008;9:1-8
- [10] De Jager N, Pallav P, Feilzer AJ. The in uence of design parameters on the FEAdetermined stress distribution in CAD/CAM produced All ceramic dental crown. Dent Mater 2005:21:242-51
- Cho L, Choli J, Yi YJ, Park CK. Effect of nish line variants on marginal accuracy and [11] fravturestrength of ceramic optimized polymer/[ber-reinforced composite crowns. J ProthetDet 2004.
- [12] Potiket N, Chiche G, Finger IM. Invitro fracture strength of teeth restored with different All ceramic crown systems. J Prosthet Dent 2004. Rammersberg P, Eickemeyer G, Pospiech P. Fracture resistance of posterior metal free
- polymer crowns. J Prosthet Dent 2000;84:14-32. [14] Shillingburg HT, Sumiya H, Whitsett LD, Jucobi R, Bruckett SE. 3rd ed., Fundamentals
- of □xed prosthodontics, vol. 139–171, 3rd ed. America: Quintessence; 1997. p. 129. [15] Gavelis JR, Mornecy JD, Riley ED, Sozio RB. The effect of various □nish line
- preparation. J Prosthet Dent 1981;45:138–45.
- Rosentiel, Land, Fuji Moto. Contemporary □xed prosthodontics, 3rd ed., America: Mosdy; 2001. p. 202–30.
 Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue
- resistance of All ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont 2008. www.ALUMINAVITAIn-Ceram1.com
- [18]
- Gokce S, Celik-Bugci E, Turkyilmaz I. A comparative invitro study of the load at [19] fracture of All ceramic crowns with various thickness of Inceram core. J Contemp Dent Pract 2008;9:17–25.
- Jalalian E, Moghadam L. Compare the fracture resistance of 2 All ceramic systems, IPS e.max, IPS Empress.J Dent (Shiraz University) 2008;9:51–7. [20]
- Scherrer SS, de Rijk KG. The fracture resistance of all ceramic crowns on supporting structure with different elastic moduli. Int J Prosthodont 1993;6:462–7. [21]
- Ayad MF. Effect of the crown preparation margin and die type on the marginal accuracy [22] of Fiber-reinforced compositecrowns. J ContempDentPract 2008;9:1-7. Gibbs CH, Anusavice KJ, Young HM, Jones JS, Esquivel-Upshaw JF. Maximum
- clenching force of patients with moderate loss of posterior tooth support: a pilot study. J Prosthet Dent 2002;88:498-502.
- Cho H-O, Kang D-W. Marginal delity and fracture strength of IPSEmpress ceramic crowns according to different cement types. J KorAcadProsthodont 2002;40:545-60. [24]