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Abstract 

We analyze two multiscale methods for reaction-diffusion process stochastic simulations. 

They can be used in systems that contain areas where the concentrations of molecules differ 

noticeably. Both approaches split an interest region into two subsets, one for stochastic partial 

differential equations (SPDEs) and the other for continuous-time Markov chain models. The 

first approach considers a pseudo compartment (also known as an overlap or handshaking 

zone) in the SPDE portion of the computational domain immediately next to the interface in 

order to associate Markov chain (compartment-based) models with reaction-diffusion SPDEs. 

There is no usage of an overlap zone in the second algorithm. Additional developments of 

both schemes are showcased, encompassing the scenario of an adaptively selected boundary 

separating distinct modeling methodologies.  

Keywords: Gillespie algorithm, multiscale modeling, chemical reaction networks, Markov 

chain, stochastic reaction-diffusion systems, and stochastic partial differential equations  

1 Introduction  

Stochastic models of well-mixed chemical systems are traditionally formulated in terms of 

continuous time Markov chains, which can be simulated using the Gillespie stochastic 

simulation algorithm (SSA) [42] or its equivalent formulations [12, 41, 60]. These algorithms 

provide statistically exact sample paths of stochastic chemical models described by the 

corresponding chemical master equation (CME). However, they can be computationally 

expensive for larger chemical systems, because they explicitly simulate each occurrence of 

each chemical reaction. A number of approaches have been developed in the literature to 

decrease the computational intensity of SSAs. Taking into account separation of time scales, 

chemical reaction networks can be simplified by model reduction before they are simulated 

[51–54, 58]. The idea of model reduction can also be used to develop computational methods 

which efficiently estimate quantities of interest from stochastic simulations [10, 11, 13, 26]. 

Another approach is to describe the molecular populations in terms of their concentrations 

that change continuously (rather than treating them as discrete random variables). This can be 

achieved by the chemical Langevin equation, which is a stochastic differential equation 

(SDE) acting as a bridge between discrete SSAs and deterministic reaction rate equations [43, 

61, 62]. Efficient algorithms which make use of the SDE approximations have been 

developed for the simulation of chemical systems especially when they include processes 

occurring on different time scales [15, 44, 46, 71]. More recently, the SDE approximations 

have been extensively used to develop hybrid algorithms which use boths SSAs and SDEs for 

different components of the studied systems [3, 19, 38, 65]. The chemical Fokker-Planck 
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equation corresponding to the chemical Langevin equation can also be used to efficiently 

estimate quantities of interest from stochastic models [14, 16, 27, 64]. In this paper, we 

consider spatially-distributed (reaction-diffusion) models which can be described in terms of 

the reaction-diffusion master equation (RDME) [25]. A spatial domain is discretized into 

compartments (which are assumed to be well-mixed) and diffusion is modelled as a jump 

process between neighbouring compartments [24, 48, 56]. In the literature, the RDME 

approach has been adapted to model and simulate spatially-distributed systems using uniform 

meshes (equivalently, subvolumes or compartments) [22, 63, 75], nonuniform meshes [8] or 

complex geometries [49]. The resulting compartment-based model can be simulated by the 

Gillespie SSA. Compartment-based reaction-diffusion approaches have been used to model 

several intracellular processes, including Min oscillations in E. coli [5, 31], ribosome 

biogenesis [20, 21], actin dynamics in filopodia [30, 80] and pattern formation in morphogen 

signaling pathways [55]. They have also been implemented in a number of software packages 

including MesoRD [47], URDME [23], STEPS [78], SmartCell [4], Lattice Microbes [68] 

and Smoldyn [69]. As in the case of the simulation of well-mixed systems, the Langevin 

approach provides an approximation of the compartment-based model which can reduce the 

computational intensity of simulations. Spatial Langevin approaches [9, 40, 50] and 

stochastic partial differential equations (SPDEs) [1, 2, 6, 18, 57] have been suggested to 

model stochastic reaction-diffusion systems. A hybrid method has also been introduced using 

the Langevin approximation for diffusion coupled with the compartment-based model for 

reactions [66]. In the thermodynamic limit (of large populations), compartment-based models 

lead to reaction-diffusion partial differential equations (PDEs) which are written in terms of 

spatio-temporal concentrations of chemical species. This property can be exploited to design 

multiscale (hybrid) algorithms which use the compartmentbased Markov chain model in a 

subset of the simulated system and apply reaction-diffusion PDEs in other parts [32, 45, 50, 

76, 79]. Other hybrid methods have also been developed in the literature including methods 

which couple more detailed Brownian dynamics (molecular-based) approaches with the 

compartment-based method [17, 33, 34, 59] or with reaction-diffusion PDEs [7, 36, 73]. In 

this paper, we analyze two multiscale algorithms which couple compartment-based models 

with suitably discretized SPDEs. They can be used when a large number of molecules of 

some species are located in parts of the computational domain. In the region with a small 

number of molecules, we use a compartmentbased model written as a continuous-time 

Markov chain. In other regions, we use SPDEs derived from the Markov process. The goal of 

this multiscale methodology is to get an approximation of the spatio-temporal statistics which 

we would obtain by running the underlying Markov chain model in the entire computational 

domain. The paper is organized as follows. In Section 2, we present the derivation of the 

SPDE description from the compartment-based model. In Section 3, two multiscale schemes 

are derived. An illustrative example with a static boundary between the SPDE and Markov 

chain subdomains is studied in Section 4. The algorithm is extended to a time-dependent 

interface in Section 5. In Section 6, we discuss an example with multiple species. 

2 From continuous-time Markov jump processes to stochastic partial differential 

equations  

We consider a system of N chemically reacting species S1, S2, . . . , SN, which are diffusing 

(with diffusion constants Di , i = 1,2,...,N) in the bounded domain Ω ⊂ R 3 . We use a 
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compartment-based stochastic reaction-diffusion model [25], i.e. we divide the domain Ω into 

K compartments Ck , k = 1,2,...,K, and model the diffusion as a jump process between 

neighbouring compartments. In order to simplify the analysis, we consider that Ω is an 

elongated pseudo-one-dimensional domain Ω = [0,Kh]×[0,hy]×[0,hz ], where h,hy,hz > 0, as 

shown in Figure 1(a). Compartments are rectangular cuboids with the volume hhyhz where 

 

Fig. 1 (a) A schematic illustration of the elongated domain Ω for K = 9. (b) A schematic 

illustration of the multiscale setup. 

 Ck = [(k−1)h, kh]×[0,hy]×[0,hz ] for k = 1,2,...,K. Let Z k i (t), i = 1,2...,N, k = 1,2,...,K, be 

the number of molecules of the i-th chemical species in the k-th compartment at time t. Then 

Z k (t) is an N-dimensional column vector with each component representing the number of 

molecules of the corresponding species in the k-th compartment at time t. We define 

 

which is a KN-dimensional column vector and T denotes the transpose of a vector. We 

assume that the chemical system is subject to M chemical reactions with ζ j , j = 1,2,...,M, 

being the corresponding Ndimensional stoichiometric vector. Let ζ k j , j = 1,2...,M, k = 

1,2,...,K, be a KN-dimensional stoichiometric vector which gives a net molecule change 

during each occurrence of the j-th reaction in the k-th compartment. Let ν k −,i (resp. ν k +,i 

), i = 1,2,...,N, k = 1,2,...,K be a KN-dimensional stoichiometric vector which gives a net 

molecule change during diffusion of the i-th species from the k-th compartment to the (k −1)-

th (resp. (k +1)-th) compartment. Let 

 

be the propensity function of the j-th chemical reaction in the k-th compartment, i.e. λ k j (Z k 

(t))dt is the probability that the j-th reaction occurs in the k-th compartment during the time 

[t,t + dt) given that the current state at time t is Z k (t). We denote by R k j (t), j = 1,2...,M, k = 

1,2,...,K, a random process which counts the number of times the j-th reaction occurs in the k-

th compartment up to time t. Then 
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where Y k j are independent unit Poisson processes. We define R k −,i (t) (resp. R k +,i (t)), i 

= 1,2,...,N, k = 1,2,...,K, random processes counting the numbers of times that one molecule 

of the i-th species in the k-th compartment diffuses to the (k −1)-th compartment (resp. to the 

(k +1)-th compartment) up to time t. Then, 

 

where Y k ±,i are independent unit Poisson processes. The governing equation for the state 

vector Z(t) i 

 

When the propensities are large [62], the counting processes in Equations (2.1)–(2.2) can be 

approximated as 

 

where Wk j and Wk ±,i are standard Brownian motions. Using ν k +,i = −ν k+1 −,i for k = 

1,2,...,K −1 and changing the index (k+1) → k in the last term of Equation (2.3), the 

governing equation (2.3) can be approximated by the following SDE [43, 62] 

 

Since Wk −,i and Wk−1 +,i terms always appear together in Equation (2.4), and since the 

sum of independent normal random variables is normally distributed, Equation (2.4) can be 

rewritten as 

 

where Wk−1 i is a standard Brownian motion. Let Vh = hhyhz be the volume of each 

compartment, and define c(t) = Z(t)/Vh as a concentration vector for species at time t. Define 
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where c k i (t) = Z k i (t)/Vh. The second part of Equation (2.6) is consistent with the 

discretized Langevin scheme for a diffusion equation, as studied in [1]. We rewrite Equation 

(2.6) using the fact that reaction happens among species in the same compartment and that 

diffusion occurs between neighbouring compartments. Differentiating Equation (2.6), the 

concentration of the chemical species in the k-th compartment satisfy 

 

where Wk (t) are N × N diagonal matrices with Wk i (t) on its diagonal for i = 1,2,...,N, k = 

1,2,...,K − 1 and χ{·} is an indicator function. In Equation (2.7), ζ j is an N-dimensional 

stoichiometric vector of the j-th reaction for j = 1,2,...,M, and D is a N × N diagonal matrix 

which has diffusion constants of individual species on its diagonal, i.e. 

 

We approximate white noise processes in Equation (2.7) using spatio-temporal white noise 

processes as 

 

where ηj(x,t), j = 1,2,...,M, are spatio-temporal white noise processes [77], i.e. 
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is normally distributed with zero mean and variance ∆x∆t. Matrices ξ (x,t) are diagonal N×N 

matrices where diagonal entries are independent spatio-temporal white noise processes. Then 

Equation (2.7) is a solution of a discretized version of a SPDE in space which can be formally 

written in the following form

 

where c(x,t) is a spatio-temporal concentration related to c k (t) by 

 

Note that Equations (2.6)-(2.7) are discretized versions of Equation (2.8), but the 

compartment-based model in (2.3) breaks down as h → 0 as discussed in Section 2.2 of [23]. 

The SPDE in Equation (2.8) is consistent to the ones in the previous work (Equation (1) in 

[57] and Equation (3.24) in [18]). For more details, see derivations of the SPDE for diffusion 

in Section 3.1 of [18] and the general version (Equations (8.2.54)- (8.2.56)) in Sections 8.1-

8.2 of [39]. 

3 Multiscale algorithms combining compartment-based models with SPDEs  

In this section, we present a multiscale approach which uses both SPDEs and Markov chain 

models. We develop two algorithms, denoted Scheme 1 and Scheme 2 in what follows, which 

are applied to illustrative examples in Sections 4, 5 and 6. Considering the same set up as in 

Section 2, we study a system of N chemically reacting species S1, S2, . . . , SN, which are 

diffusing (with diffusion constants Di , i = 1,2,...,N) in an elongated domain Ω = 

[0,L]×[0,hy]×[0,hz ], where L = Kh, given in Figure 1. The domain Ω is divided into K 

compartments (rectangular cuboids) with Ck = [(k −1)h, kh]×[0,hy]×[0,hz ] for k = 1,2,...,K. 

The main goal of this paper is to replace the Markov chain description in a part of the 

computational domain by the corresponding SPDEs. Let us consider that we use the SPDE in 

Equation (2.8) in the domain 

 

Fig. 2 Schematic diagrams of (a) Scheme 1 and (b) Scheme 2 describing molecular transfer 

between Ωs and Ωm. Note that the size of a virtual compartment in Ωs is h in panel (a). 
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Ωs = [0,I]×[0,hy]×[0,hz ] where I = Ksh and K > Ks ∈ N; i.e. we consider that the first Ks 

compartments are described by a suitable discretization of the SPDE in Equation (2.8), see 

Figure 1(b). We only use the Markov chain model for the remaining Km = K −Ks 

compartments, i.e. in subdomain Ωm = [I,L]×[0,hy]×[0,hz ]. In this section, we develop an 

appropriate boundary condition on the interface I between Ωs and Ωm. In order to design the 

numerical scheme, the SPDE in Equation (2.8) needs to be appropriately discretized. We 

denote by ∆x the mesh size used in the discretization of the SPDE. There are two important 

cases: (i) ∆x > h and (ii) ∆x ≤ h. In this section, we focus on case (ii), because we are 

interested in coupling the SPDE in Equation (2.8) with Markov chain models. The case (i) is 

important when one uses discretized SPDEs to design efficient multiscale schemes, but this 

introduces additional discretization errors. We will discuss case (i) in Section 7. In Ωs , each 

compartment of size h is discretized into α grid points (α ∈ N) with each grid size equal to 

∆x. In the remaining part of the computational domain Ωm, the compartment-based model is 

used. The state of the system of the multiscale model is described by vectors X k (t), k = 

1,2,...,Ksα +Km. The vector X k (t) for k = 1,2,...,Ksα represents species ‘numbers’ in the 

mesh interval [(k −1)∆x, k∆x] in the SPDE region Ωs , i.e. it is related to spatio-temporal 

concentration c(x,t) used in the SPDE description by 

 

The vector X Ksα+k (t) for k = 1,2,...,Km represents species numbers in CKs+k = [I + (k 

−1)h,I +kh] in the Markov chain region Ωm, i.e. it is related to the state vector Z k (t) used in 

the Markov chain description by X Ksα+k (t) = Z Ks+k (t). We consider two different 

schemes to describe transfer of molecules near the interface I coupling discretized SPDEs and 

the Markov chain model, as shown in Figure 2. Without loss of generality, both schemes are 

introduced for diffusion, because the description of reactions does not influence the transfer 

of molecules across the interface I. In Scheme 1, we assume that there is a virtual 

compartment, CKs = [I − h,I], in Ωs , where the molecules are partially treated using a 

compartment-based approach. Such overlap (handshaking) regions are common in many 

multiscale methodologies, including coupling molecular dynamics with Brownian dynamics 

simulations [28,29], Brownian dynamics with PDEs [36], or in atomistic to continuum 

coupling methods [67]. We define a state vector 

 

which is a (Ksα + Km)N-dimensional column vector. Scheme 1 is described using the 

following evolution equation for state vector X(t): 
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where the first term on the right hand side represents diffusion in Ωs (compare with Equation 

(2.5) replacing h by ∆x). Note that the indicator function χ {X k i (s)+X k−1 i (s)≥0} is used 

to make sure the term inside the square root not being negative. Here the symbols ν k ±,i 

describe (Ksα + Km)N-dimensional stoichiometric vectors. The second and third terms 

represent diffusion in the compartment-based region, Ωm, where Y k ±,i are independent unit 

Poisson processes (compare with Equation (2.2)). The last two terms represent transition of a 

molecule from Ωm to Ωs and from Ωs to Ωm, respectively. A molecule in Ωm in the 

boundary compartment, CKs+1, jumps to the SPDE domain with a rate Di/h 2 . A molecule 

which jumps is placed to one of the mesh points in the overlap compartment, CKs . To 

describe this process in Equation (3.1), we have defined indicator function 

 

where U±,i(t) are independent uniform variables for each t and i. Stoichiometric vectors, η ` 

±,i for ` = 1,2,...,α, i = 1,2,...,N, give changes due to the diffusion of the i-th species between 

the `-th SPDE discretization point in CKs and the compartment CKs+1 across the interface I. 

Transition of a molecule from Ωs to Ωm is described by the last term of Equation (3.1) using 

time-changed Poisson processes. A molecule, anywhere in the overlap compartment CKs , 

can be transferred with a rate Di/h 2 . The corresponding molecule is then randomly 

subtracted from one of α discretization grid points which are in CKs . Note that the molecular 

copy number, ∑ α j=1 X (Ks−1)α+j i (s), in the last term of Equation (3.1) can be non-integer 

value due to the non-integer concentration in CKs . To prevent X (Ks−1)α+j i (s) being 

negative due to the molecular transfer from Ωs to Ωm, another indicator function is used in 

the last term of Equation (3.1) to set the propensity as zero if the total molecular copy number 

in CKs is less than 1 
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Scheme 2 is described in terms of two unknown parameters, denoted Ψ1 and Ψ2, by the 

following evolution equation for the state vector X(t): 

 

The first three terms in Equation (3.2) are identical to those in Equations (3.1). The fourth 

and fifth terms describe molecular transfer between the last grid point in Ωs and the boundary 

compartment CKs+1. A molecule in Ωm in the boundary compartment, CKs+1, jumps to the 

last grid point of the SPDE domain with rate Ψ1Di/h 2 , and the transfer rate in the opposite 

direction is Ψ2Di/∆x 2 . Note that X Ksα i (s) in the fifth term of Equation (3.2) can be non-

integer value due to the non-integer concentration in Ωs . To prevent X Ksα i (s) being 

negative due to the molecular transfer from Ωs to Ωm, we use an indicator function to set the 

propensity as zero if the molecular copy number in the last grid point in Ωs is less than 1. To 

determine parameters Ψ1 and Ψ2 of Scheme 2, we use the discretization of the 1-dimensional 

partial differential equation for diffusion using a finite volume approximation [8]. It gives the 

jump coefficient of the i-th species from the j-th compartment to the neighbouring j 0 -th 

compartment as Di/(hj |aj −aj 0|), where hj is the length of the j-th compartment and aj and aj 

0 are the centers of the j-th and j 0 -th compartments, respectively. Considering the size of the 

domain allowed for molecule transfer across the interface in Scheme 2, we set |aj −aj 0| = 

(∆x+h)/2. We take hj = ∆x for the jump coefficient from Ωs to Ωm and hj = h for the jump 

coefficient from Ωm to Ωs . Then, we match the jump coefficients to the rate constants for 

jump across the interface given in Equation (3.2) to derive the following formula for the 

parameters of Scheme 

 

The multiscale algorithm for Scheme 1 for the case of diffusion only is given in Table 1. We 

denote a propensity of diffusion of the i-th species in the (Ks + k)-th compartment in Ωm to 

the left (resp. right) as a k −,i (t) = Di/h 2X Ksα+k i (t), for k = 1,2,...,Km, (resp. a k +,i (t) = 

Di/h 2X Ksα+k i (t), for k = 1,2,...,Km −1) for i = 1,2,...,N. This definition also includes the 

propensity of a diffusive jump of the i-th species from the Markov chain domain, given as a 1 

−,i (t). We denote a propensity of diffusive jump of the i-th species from the SPDE domain b 
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Then, we define total propensity in Ω 

 

Total propensity a0 is used in steps [A] and [B] in the pseudocode in Table 1 to select time 

when the next event occurs in Ωm. The pseudocode denotes the time of the next update in 

each subdomain as ts and tm, an 

 

Table 1 Pseudocode for the multiscale reaction-diffusion algorithm with Scheme 1 applied to 

simulation of diffusion. 

the current time as t. In step [B], we update the compartment-based part of the system. In step [C], we 

update the SPDE part of the system by 

 

where ζ k−1 i are independent normally distributed random numbers with zero mean and unit 

variance 

4 Application: static boundary  

In this section, we apply the multiscale approach to examples in which we know a priori the 

position of the boundary I between Ωs and Ωm. Generalization to a more complicated case 

with a moving boundary is presented in Section 5. 4.1 A morphogen gradient model We 
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consider a morphogen gradient model in Ω = [0,L]×[0,hy]×[0,hz ]. It consists of one 

chemical species S, i.e. Z k (t) is a scalar describing the number of molecules of S in Ck . The 

state of the Markov chain model is described by the K-dimensional column vector Z(t) = Z 1 

(t),Z 2 (t),...,Z K(t) T . Morphogen is subject to diffusion which is described by Equation 

(2.2). There are also two reactions in the system. Morphogen, S, is produced in the first 

compartment with rate J, i.e. the propensity is λ 1 1 Z 1  = J. Morphogen degrades 

everywhere with rate δ, i.e. with propensity λ k 2 Z k  = δZ k for k = 1,2,...,K. In all stochastic 

simulation 

 

Table 2 Parameter values in the morphogen gradient model studied in Section 4.1. 

the morphogen gradient model, we assume that 500 morphogen molecules are initially 

uniformly distributed in the half of the domain, Ωs = [0,L/2]×[0,hy]×[0,hz ]. The parameters 

are given in Table 2. Denoting c(x,t) the morphogen density at point x and time t, the 

deterministic model can be written as PDE 

 

where D is the diffusion constant of S. We apply the multiscale approach using both schemes 

developed in Section 3. Since the morphogen is produced at the left end, the morphogen has a 

decreasing gradient as it goes towards L. Therefore, we split the spatial domain in half, and 

set the left half as Ωs and the right half as Ωm, i.e. I = L/2. The (Ksα +Km)-dimensional state 

vector of the multiscale model is denoted X(t) = X 1 (t),X 2 (t),...,X Ksα+Km (t) T . Note that 

morphogens are produced only in the first discretization mesh point with size ∆x in Ωs . In 

Figure 3, we simulate the morphogen gradient model using Scheme 1 of the multiscale 

algorithm. We calculate 104 realizations of the sample paths of the stochastic process, and 

present mean and standard deviations of the morphogen numbers in Ω at different times, t = 

0,2,5,20 s. Morphogen numbers in α grid points of Ωs are summed so that they can be 

compared to the numbers in the underlying Markov chain model. We compare the results 

with mean and standard deviations of the morphogen numbers which we calculate 

analytically using matrix analysis for reaction-diffusion Markov chain models [37, 56]. In 

Figure 3, morphogen numbers in Ωs (resp. in Ωm) are expressed as green bars (resp. blue 

bars). Error bars represent one standard deviations from the mean number of morphogens in 

each compartment. Mean and standard deviations of the morphogen numbers from the 

analytic solution are drawn as a red line and blue dotted lines. The results using the 

multiscale algorithm match perfectly to the ones from the exact solution. In Figure 4, we 

present relative errors of the means and standard deviations of the number of molecules 
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between the Markov chain model and multiscale model. The analytic solution is used for the 

statistics of the Markov chain model, and both schemes are applied numerically for the 

multiscale approaches. Errors are defined as 

 

where E[·] and σ[·] represent a mean and standard deviation. In Figure 4(a), red and green 

lines represent em(k) and ev(k) at time t = 50 s using Scheme 1, respectively, and blue and 

purple lines are for Scheme 2. We observe that the relative errors in Equation (4.1) are less 

than 4% in the entire simulation domain. In Figure 4(b), we compare the maximum absolute 

values of the relative errors defined in Equation (4.1) with α = 1, 5, 10, 25 and fixed 

compartment size h where α = h/∆x. In both schemes, the relative errors are in a range of less 

than 4% except for the case when α = 25 with Scheme 2. The relative errors in the mean and 

standard deviation become significantly larger when we apply the multiscale algorithm using 

Schem 

 

Fig. 3 Comparison between mean numbers of morphogens and their standard deviations from 

the mean using the analytic solution (red lines and blue dotted lines) and Scheme 1 (green 

bars and blue bars for the means in Ωs and Ωm, respectively, and error bars for the standard 

deviations).  
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2 with α = 25. In this case, the mean in CKs+1 gets larger than the mean in CKs which shows 

a bias in the method for larger values of α (the exact mean number of molecules decreases 

along the x-axis). We provide an explanation of this phenomenon in the next section. 

4.2 A diffusion model with two compartments  

In Section 4.1, we have observed that the error of Scheme 2 increases when we decrease the 

ratio of the numerical discretization in Ωs and the compartment size. When α = 25, the mean 

number of molecules of the morphogen does not have a decreasing gradient across the 

interface I in Scheme 2. Therefore, we set a two-compartment model with diffusion to see 

what causes this numerical error. The setting is similar to the one in Section 4.1, but we set J 

= δ = 0 so that there is no flux or degradation of the morphogen. Set L = 2h and I = h (= 1µm) 

so that Ωs = [0,h]×[0,hy]×[0,hz ] and Ωm = [h,2h]×[0,hy]×[0,hz ]. Then, each region consists 

of one compartment, Ks = Km = 1, and X(t) is an (α +1)-dimensional vector. In Figure 5(a), 

we present simulation results of the two-compartment model using Scheme 1 (red line) and 

Scheme 2 (green line) with α = 10, 20, 30, 40, 50 and compare them to the simulation result 

of the Markov chain model using the Gillespie SSA (purple line). The Markov chain model 

has α + 1 numerical grid points where the first α ones are with size ∆x = h/α and the last one 

with size h. Diffusion of molecules is simulated by jumps from grid points to their nearest 

neighbours, i.e. the numerical meshes in the Markov chain model are coupled by diffusion in 

the same way as it is done in Scheme 2. Applying both multiscale algorithms and the 

Gillespie SSA, we compare the mean morphogen numbers in the second compartment 

computed from 100 realizations of simulation. Using 50 molecules in total, the exact value of 

the mean 

 

Fig. 4 (a) Errors em(k) and ev(k) given by Equation (4.1) are computed at time 50 s. (b) The 

maximum absolute values of the errors em(k) and ev(k) given by Equation (4.1) are 

computed at time 50 s with a static boundary and different values of α. The maximum value 

of the errors is taken over all region, Ω. Red and green lines are relative errors of the means 

and standard deviations between the analytic solution of the Markov chain model and Scheme 

1. Blue and purple lines are relative errors between the Markov chain model and Scheme 2. 
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Fig. 5 (a) The mean number of morphogens in C2 at time t = 50 s. Different simulation 

methods are compared with α = 10, 20, 30, 40, 50 (with a static boundary): the Gillespie SSA 

with multigrid discretization (α grid points with size ∆x and one grid point with size h), 

Scheme 1, Scheme 2, and Scheme 2 with no noise due to diffusion in Ωs . (b) The probability 

distribution of the normalized morphogen number in C1 with Scheme 2. The probability 

distributions are computed for X` (t)/∆x, ` = 1,2,...,α and compared among the cases with α = 

10, 50 (with a static boundary) at time t = 0.01, 50 s. Initially, 50 molecules are located in Ωs 

in panels (a) and (b). 

numbers of molecules in Ck , k = 1,2, is 25. Notice that Scheme 1 and the Gillespie SSA with 

two mesh sizes correctly approximate the means. However, Scheme 2 overestimates the mean 

morphogen number in C2 as α gets large. To understand where the numerical error arises, we 

also simulate Scheme 2 without the noise term in the SPDEs (marked as a blue line in Figure 

5(a)), i.e. we remove the term with a square root in Equation (3.2). In Figure 5(a), we observe 

that the mean morphogen number in C2, E[X α+1 ], is underestimated as α increases when 

we use Scheme 2 without noise term in the SPDEs. Note that X ` , ` = 1,2,...,α, always have 

non-negative integer values due to no noise term in Equation (3.2). The molecular transfer 

from Ωs to Ωm occurs when X α ≥ 1. However, the frequency of this transfer is not sufficient 

as α gets large, which lowers X α+1 . On the other hand, with noise terms included in 

Equations (3.1) and (3.2), there are more chances that X ` < 0 for some ` = 1,2,...,α due to 

large fluctuations with a small number of molecules as α gets large. 
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Table 3 Pseudocode for the adaptive multiscale reaction-diffusion algorithm with Scheme 1 

applied to simulation of diffusion 

Then, it is more frequent that X α ≥ 1 due to the fact that ∑ α+1 `=1 X ` = 50 and X ` < 0 for 

some ` = 1,2,...,α. More frequent molecular transfer from Ωs to Ωm causes overestimation of 

the mean morphogen number in C2 in Scheme 2. In Figure 5(b), we compare distributions of 

the morphogen numbers when α = 10 and 50. The distributions are computed from 1000 

realizations of simulation when t = 0.01 s and 50 s. Each distribution is computed for all X ` , 

` = 1,2,...,α so that we can display an overall range of the morphogen number in each 

discretization of Ωs . Each X ` is normalized by ∆x so that the distributions can be compared 

for different α’s. The normalized mean morphogen number (density) in Ωs decreases 

significantly in both cases with α = 10 and 50 as time evolves. On the other hand, the 

variance of the morphogen density is much greater for α = 50 than for α = 10 at t = 0.01 s due 

to the lower morphogen number in each discretization of Ωs . Therefore, we conclude that the 

error in Scheme 2 strongly depends on the size of fluctuations close to the interface. On the 

other hand, the molecular transfer from Ωs to Ωm is decided by ∑ α `=1 X ` in Scheme 1. 

This setting makes Scheme 1 more robust than Scheme 2 for large values of α since it helps 

to overcome the errors due to the negative abundance. 

5 Application: moving boundary 

 In some applications [70], it is difficult to decide a position of the interface I a priori. In this 

section, we extend the presented algorithm to the case when the location of the interface I(t) 

between Ωs and Ωm moves in time, based on the number of molecules in each location of the 

domain. The multiscale approach with the adaptive interface is applied to the example 

introduced in Section 4. The adaptive algorithm is described in Table 3. Following [70], we 

introduce two thresholds denoted Qupper and Qlower (Qupper ≥ Qlower), and one integer 

parameter nc. We initialize the position of the interface I(0) = 0 in step [A’], i.e. we initially 

model the whole domain using the detailed compartment-based approach. We run the original 

Scheme 1 until time nc∆t. We check whether the interface I(t) should be moved in step [C’]. 

If the number of molecules in the compartment next to the interface in Ωs is smaller than 

Qlower, a compartment-based model is used in that region. On the other hand, if the number 

of molecules in the boundary compartment next to interface I(t) in Ωm is larger than 
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threshold Qupper, the corresponding compartment is transferred to the SPDE region where 

the molecules are redistributed uniformly in α grid points. Due to the uniform redistribution 

of the molecules, rapid changing of the interface I(t) introduces more errors. Note that in 

Scheme 1 with a fixed boundary, one molecule has been chosen randomly from α 

discretizations of CKs in Ωs and transferred to CKs+1 in Ωm. Similarly, we have taken one 

molecule from CKs+1 and transferred 

 

Fig. 6 Comparison between one realization of the number of morphogens using Scheme 1 

with a moving interface, given in Table 3 (green bars and blue bars for the morphogen 

numbers in Ωs and Ωm, respectively) and the analytic solution of the mean (red dots). A blue 

dotted line represents the location of the interface. 

the molecule to the randomly chosen SPDE numerical domain in CKs . However, in the 

adaptive algorithm, we modify the setting of Scheme 1 so that a molecule is taken uniformly 

from the entire region of CKs and transferred to CKs+1, i.e. 1/α molecule is subtracted in all 

α SPDE grid points of CKs . Similarly when the molecule is transferred from CKs+1 to CKs , 

1/α molecule is added in all α grid points of CKs . Without this modification of the setting in 

Scheme 1, the appropriate level of the morphogen gradient is not formed in the next example. 

The adaptive algorithm [A’]–[D’] is applied to the morphogen gradient model introduced in 

Section 4, and the results are presented in Figure 6. We use Qlower = 15, Qupper = 25 and nc 

= 10. Other parameters are given in Table 2. Our initial condition is X k (0) = 0, for k = 

1,2,...,Ksα +Km, i.e. the system starts with no molecules and the gradient is formed during 

the simulation. In Figure 6, one realization of the algorithm in Table 3 at different times t = 

0.5, 2, 10, 40 s is presented. The green and blue bars represent the numbers of molecules in 

the corresponding compartments in Ωs and Ωm, respectively. The blue dotted line represents 
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interface I(t) between two regions, and the red circles are the mean numbers of molecules 

obtained from the analytic solution of the stochastic model. Our results show that the 

boundary between two regions is moving to the right in time as the molecule numbers 

increase due to the production on the left. In Figure 7(a) and 7(b), we simulate the adaptive 

algorithm with fixed thresholds for a range of values of nc = 1, 10, 102 , 103 , 104 , which are 

the numbers of time steps to check the criterion to move the interface I(t) in step [C’]. Two 

sets of fixed thresholds are chosen, (Qlower,Qupper) = (15,25) in (a) and (Qlower,Qupper) = 

(20,20) in (b). In Figure 7(c) and 7(d), we simulate the adaptive algorithm with fixed numbers 

of time steps, nc, for different values of Qlower and Qupper, which are the threshold values 

to check before we move the interface I(t) in step [C’]. We use the following pairs of the 

values for the thresholds: (Qlower,Qupper) = 

 

Fig. 7 The maximum absolute values of the relative errors in all locations at time 50s using 

the multiscale algorithms, with a moving boundary. Different values of nc = 1, 10, 102 , 103 , 

104 , are used with fixed thresholds (a) (Qlower,Qupper) = (15,25), and (b) (Qlower,Qupper) 

= (20,20). Different threshold values (Qlower,Qupper) = (5,55), (10,40), (15,25), (20,20) are 

used with (c) nc = 1 and (d) nc = 103 . Red and green lines are the maximal relative errors of 

the means and standard deviations between the analytic solution of the Markov chain model 

and Scheme 1. Blue and purple lines are maximal relative errors between the Markov chain 

model and Scheme 2. 

(5,55), (10,40), (15,25), (20,20). Two fixed numbers of time steps are used, nc = 1 in (c) and 

nc = 1000 in (d). As shown in Figure 7(b) and 7(c), we observe that the maximum absolute 

values of the relative errors increase as the number of time steps, nc, or the size of the 

threshold window, Qupper −Qlower, gets smaller. This is because the small size of the 

number of time steps or the threshold window makes the interface location change frequently, 

which causes additional errors. On the other hand, Figure 7(a) and 7(d) do not show similar 

pattern since large size of the threshold window (Qupper − Qlower = 10) and the number of 

time steps (nc = 103 ) prevents frequent movement of the interface location. Overall, Scheme 

2 has slightly smaller errors than Scheme 1. In Figure 7, the maximum absolute values of the 

relative errors are calculated using 104 realizations of simulation using Scheme 1 or 2 for 
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each value of nc and for each set of values of (Qlower,Qupper) and using the analytic 

solution of the Markov chain model. 

6 Applications:  

multiple species In this section, we illustrate the applicability of the multiscale approach to 

chemical systems with multiple species. Since different chemical species can have very 

different molecular distributions in the computational domain, the partition of the 

computational domain into subdomains Ωs and Ωm can be species dependent. We use the 

pom1p gradient model from Saunders et al. [72] to illustrate a multiscale approach, where 

each species has a different partition into Ωs and Ωm depending on its molecular distribution. 

The model consists 

 

Table 4 Parameter values in the two-state model for pom1p gradient. 

of two species, slow-diffusing pom1p clusters, denoted S1, and fast-diffusing pom1p 

particles, denoted S2. We use pseudo 1-dimensional domain Ω as in Figure 1, where L = 

14µm, which is divided into K = 40 compartments, Ck , k = 1,2,...,K. Both S1 and S2 are 

produced in the whole computational domain with space-dependent rates [72], i.e. with 

propensities 

 

where k = 1,2,...,K, and a1, a2 and a6 are constants given in Table 4. In addition to 

production, species S1 and S2 are subject to the following reactions which take place in the 

whole domain 

 

with the corresponding propensities given by 
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where k = 1,2,...,K, and a3, a4 and a5 are constants given in Table 4. In Figure 8, we present 

an illustrative simulation of pom1p gradient model. We plot spatial distributions of S1 and S2 

at times t = 50 s and t = 1000 s. We observe that the spatial distribution of S1 contains a 

region with high abundance of molecules in the center of the computational domain. The 

chemical species S2 has low copy numbers in the entire domain. Therefore, we introduce the 

SPDE region in the middle of the domain by (note that we fix K = 40 in this example) 

 

where the coarse-graining is only applicable to S1 in Ωs . In particular, we have introduced 

two interfaces, I1 and I2 between Ωs and Ωm. Diffusion of chemical species S1 is simulated 

using the algorithm in Table 1. Similarly, production of S1 is implemented using the SPDE 

and Markov chain model in Ωs and Ωm, respectively, as we did in Equation (3.1). The 

chemical species S2 is simulated by the Markov chain model in the entire domain, because 

the average number of molecules of S2 is relatively low. In particular, diffusion, production 

and degradation of S2 are implemented as in the underlying Markov chain model. The only 

complications are reactions 

 

 

Fig. 8 Mean numbers of the molecules of slow-diffusing pom1p clusters and fast-diffusing 

pom1p particles, and their standard deviations from the means at t = 50, 1000 s computed 
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from 104 realizations of simulation using the SSA and the multiscale algorithm with Scheme 

1. 

because they include both species S1 and S2, which are in Ωs described by different 

modeling approaches. We treat these reactions as time-changed Poisson processes in both 

subdomains Ωm and Ωs . Discretizing each compartment, Ck , k = 11,12,...,30, into α grid 

points, the state of S1 variable is described by vector, X(t) = (X 1 ,X 2 ,...,X 20(α+1) ) where 

X 1 ,X 2 ,...,X 10 (resp. X 20α+11 ,X 20α+12 ,...,X 20(α+1) ) are the numbers of molecules 

of S1 in the left (resp. right) part of Ωm. The values of SPDE description in compartment Ck 

, k = 11,12,...,30, are given by X 10+(k−11)α+` , ` = 1,2,...,α. The state of S2 variable is 

described by vector, Y(t) = (Y 1 ,Y 2 ,...,Y 40) where Y k is the number of molecules of S2 in 

compartment Ck , k = 1,2,...,K. The propensity of the first reaction in (6.1) of the multiscale 

model is given by 

 

The propensity of the second reaction in (6.1) of the multiscale model is given by 

 

We simulate reactions in (6.1) as time-changed Poisson processes with propensities in 

Equations (6.2)–(6.3). If the first of these reactions occurs in Ck , k = 11,12,...,30, we subtract 

1/α from each X 10+(k−11)α+` ,` = 1,2,...,α, and we add one to Y k . If the second reaction in 

(6.1) occurs in Ck , k = 11,12,...,30, we add 1/α to each X 10+(k−11)α+` , ` = 1,2,...,α, and we 

subtract one from Y k . Note that the conversion of S1 in Ck , k = 11,12,...,30, is applied 

equally to the entire α grid points of Ck rather than to one randomly chosen grid point in Ck 

as we do for diffusion across the interfaces. In Figure 8, green bars and blue bars represent 

the mean numbers of molecules of the pom1p clusters and particles in Ωs and Ωm using the 

multiscale algorithm with Scheme 1. Error bars represent one standard deviation from the 

mean in the multiscale approach. Red lines and blue dotted lines are the mean numbers and 

their standard deviations from the means computed by the Gillespie SSA simulating the 

compartmentbased approach in the entire domain. Both statistics using the compartment-

based approach and the multiscale algorithm are computed from the 104 realizations of the 

simulations for each case. 

7 Discussion  

A Markov chain model (compartment-based model) has been widely used to describe the 

discrete nature of the molecular copy numbers and inherent stochasticity in reaction-diffusion 

systems, but it can be computationally intensive. A possible approach to increase efficiency 

of simulations is to approximate a part of the model by some coarse-grained methods. In this 

paper, we have introduced two multiscale algorithms coupling the SPDEs and the Markov 
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chain model, which provide good approximations to the solutions obtained by the Markov 

chain model applied in the entire spatial domain. Two coupling methods of the Markov chain 

model and the SPDEs across the interface have been studied. In this section, we compare the 

presented approach with methods in the literature. Several Langevin formulations have been 

introduced to model fluctuating hydrodynamics for chemically reactive species [9] and 

stochastic reaction-diffusion systems [40, 50]. In particular, the spatial chemical Langevin 

equation was applied to the Gray-Scott model, and its pattern formation was compared to the 

ones obtained by the reaction-diffusion master equation and PDEs [40]. The spatial chemical 

Langevin equation consists of a system of stochastic differential equations, and it corresponds 

to Equation (2.4) in Section 2. On the other hand, several approaches using SPDEs [1, 2, 6, 

18, 57] have been introduced to model stochastic reaction-diffusion systems. In [6], the SPDE 

was derived for reaction-diffusion systems, and discretization of PDEs and stochastic fields 

was discussed. Unlike Equation (2.5), the stochastic fields in the discretized SPDEs account 

for fluctuations due to diffusion but not for reaction. In [57], the SPDE for reaction-diffusion 

systems was derived which is consistent with Equation (2.8). In their formulation, diffusion 

was implemented by the SPDE while the reaction was simulated using the exact or modified 

SSA. In [79], two hybrid algorithms are suggested for coupling a compartment-based model 

and a PDE model when the size of the PDE discretization is less than or equal to the 

compartment size. Both algorithms extend the PDE approach to the systems with low copy 

numbers of molecules in a part of the computational domain. The first algorithm considers 

the PDE solution as the probability density to find a particle within the region and is applied 

to both cases of low and high copy numbers of molecules in the PDE region. The second 

algorithm is a simplified and more efficient version of the first one when the PDE region 

involves the high copy number of molecules. Like in this paper, both algorithms implement a 

pseudo-compartment with size h in the PDE region where h represents the compartment size. 

The second algorithm in [79] is similar to Scheme 1 if a discretized version of SPDEs 

replaces the PDEs. However, the interface between the two modeling regimes is assumed to 

be fixed in [79]. In [45], a hybrid algorithm is introduced coupling a compartment-based 

model and PDEs where the size of the PDE discretization is much finer than the compartment 

size. In the model, an overlap region is defined with two interfaces (corresponding to the 

pseudo-compartment in Scheme 1) where both modeling regimes are valid, and both cases 

with fixed and adaptive interfaces are considered. Unlike our pseudo-compartment in Scheme 

1, the overlap region can contain multiple compartments if needed. On one interface between 

the compartment-based model and the overlap region, the population of the PDE solution on 

the interface is matched to the average of the population in the neighbouring compartments. 

On the other interface between the PDE region and the overlap region, flux on the interface 

was matched. The hybrid algorithm in [45] approximates the mean population numbers in the 

compartment-based model if it was applied over the entire spatial region. The use of the 

overlap region allows matching the variance between two models in the compartment-based 

region when the fixed interface is used. On the other hand, the goal of Scheme 1 and Scheme 

2 is to approximate the compartment-based model by employing the discretized version of 

SPDEs in the region with high molecules. Therefore, we can match both the mean and 

variance of the population numbers computed by our multiscale algorithms to those in the 

compartment-based model if it was used in the whole spatial domain. This is done for both 

cases with a fixed or adaptive boundary. Unlike the previous approaches in [45, 79], the 
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presented multiscale algorithms can apply to systems with multiple species as it is shown in 

Section 6 where each species has a different partition of the spatial domain into subdomains 

where different models are used, depending on the spatial distribution of molecules of each 

species. In [76], a hybrid algorithm is presented using a compartment-based model and PDEs, 

where the size of the compartment and numerical discretization for the PDE model is equal. 

In this paper, we have discussed the case when the mesh size of the numerical discretization 

of the SPDEs is smaller (or equal) than the compartment size in the Markov chain model (h ≥ 

∆x). This case is useful when we add inherent stochasticity in the PDE model where a fine 

spatial resolution of the PDE solution is required to describe the solution of the SPDE. This 

case was also discussed in other hybrid algorithms coupling the compartment-based model 

and the macroscopic PDEs [45, 79]. The other case, h < ∆x, discussed, for example, in the 

hybrid algorithm coupling a random walk on a lattice and the PDE model [35], is helpful 

when the PDE or SPDE model is used as a coarse-grained approximation of the 

compartment-based model. Such approximation can be used in the region where spatial 

concentration gradients are not large, so they do not require a fine resolution in space. 

Although we have focused on the case h ≥ ∆x, the presented approach can be extended to h < 

∆x as well. In fact, if h = ∆x, both Scheme 1 and Scheme 2 will be the same. If h < ∆x, we 

may be able to consider an overlap region (like a pseudo-compartment) in the compartment-

based region to extend Scheme 1. The presented SPDE-based approach provides a bridge 

between the stochastic approach (using the Markov chain compartment-based model) and the 

deterministic approach (using the macroscopic PDEs) by incorporating a discretized version 

of SPDEs. The SPDEs can be utilized to build other hybrid models, for example, by coupling 

them with macroscopic PDEs. Then some approaches used in the hybrid algorithms coupling 

the compartment-based model with the PDEs [45, 74, 76, 79] will naturally apply to the case 

with the SPDEs. 
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