ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

Original research article

A hospital based comparative study among different doses of dexmedetomidine in attenuating extubation response in patients undergoing Laproscopic cholecystectomy

¹Dr. Karri Pavani, ²Dr. Rajashekar Reddy Motkar, ³Dr. Allenki Prashanthi, ⁴Dr. Dasari Shiva Prasad ^{1,2}Associate Professor, Department of Anesthesiology, MAMS, Bachupally, Telangana, India ³Assistant Professor, Department of Anesthesiology, MAMS, Bachupally, Telangana, India ⁴Professor, Department of Anesthesiology, MAMS, Bachupally, Telangana, India

Corresponding Author:

Dr. Dasari Shiva Prasad

Abstract

Aim: The aim of the present study was to evaluate and compare the effect of different doses of Dexmedetomidine on Heart rate, Blood pressure, oxygen saturation and depth of anaesthesia.

Methods: The present study was conducted in Department of Anaesthesiology after approval by institutional ethics committee. This study was carried out on 150 patients in the age group of 20 to 60 years. Patients were ASA I-II, scheduled for Lap cholecystectomy.

Results: The enrolled patients fulfilling all the inclusion and exclusion criteria were divided into three groups with 50 patients in each group. Group A (n=50) recieved $0.5\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml). Group B (n=50) recieved $0.75\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml) and Group C (n=50) recieved 1 $\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml). There were more females than males in all the three groups. Mean Age in group A, B and C were 42.18 ± 11.19 , 41.69 ± 11.20 and 43.67 ± 9.25 respectively. All the three groups were comparable with respect to age of the patients (p>0.05). The groups were also comparable in terms of Sex, BMI and ASA grade (p>0.05). The groups were comparable in terms of duration of surgery and interval between start of Dexmedetomidine infusion and Extubation (p>0.05). The difference in quality of Extubation is significant between group A & group B and between group A & group C whereas it was comparable between group B & group C.

Conclusion: The attenuation of Extubation response was almost similar with Dexmedetomidine in dose of $0.75\mu g/kg$ and $1\mu g/kg$. However, with increase in dose from $0.75\mu g/kg$ to $1\mu g/kg$ there was significant increase in the side effects in the form of bradycardia (p<0.05). So, we concluded that $0.75\mu g/kg$ is the single best dose of Dexmedetomidine for attenuation of Extubation response.

Keywords: Dexmedetomidine, Lap cholecystectomy, tracheal extubation

Introduction

Laparoscopic cholecystectomy has revolutionized the treatment for gallstone disease and is considered a gold standard modality in the present era $^{[1]}$. Advantages of laparoscopy include less postoperative pain, small incisions, shorter hospitalization and faster functional recovery. Despite multiple benefits, any laparoscopic surgery always poses a challenge for safe anesthesia management, mainly due to significant hemodynamic alterations, resulting from the combined effects of pneumoperitoneum, patient position, and hypercapnia from the absorbed carbon dioxide (CO₂) that is used to produce pneumoperitoneum $^{[2]}$. CO₂ is readily absorbed from peritoneal cavity into circulation resulting in hypercapnia.

Both hypercapnia and pneumoperitoneum, stimulate sympathetic nervous system which causes release of catecholamines and vasopressin and activation of renin-angiotensin system. All these changes collectively lead to decrease in cardiac output and elevated systemic and pulmonary vascular resistance, which, in turn, results in tachycardia, hypertension, and increased myocardial oxygen demand. These hemodynamic changes are even more pronounced in hypertensive patients than normotensive patients during general anesthesia and require more anesthetic interventions to get hemodynamic stability. Altered hemodynamics if not managed successfully, particularly in hypertensive patients, can lead to poor outcomes in the intraoperative and postoperative period [3].

ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

Hypertension is the most common comorbidity encountered in the preanesthesia clinics ^[4]. The hemodynamic variations during extubation are well tolerated by healthy individuals, but may be detrimental in hypertensive patients. Tracheal extubation has always received less weightage than intubation when attenuation of hemodynamic responses is considered. It causes 10%-30% increase in blood pressure and heart rate (HR) because of high plasma catecholamine levels which can further add on to already existing high blood pressure ^[5, 6]. The above events lead to increased oxygen demand which can cause myocardial ischemia and infarction. Myocardial oxygen demand, especially in hypertensive patients is often increased owing to myocardial hypertrophy and decreased perfusion to coronary, further making these patients a high risk for adverse events ^[7]. Thereby it is logical to consider preventive methods to attenuate these undesirable responses during extubation.

Dexmedetomidine is a FDA approved α 2-adrenoreceptor agonist with a distribution half-life of approximately 6 minutes indicated for intensive care unit sedation in mechanically ventilated patients ^[8] and for sedation of non-intubated patients before or during surgical and other procedures has now been successfully used for attenuating the stress response to laryngoscopy ^[9]. Dexmedetomidine activates receptors in the medullary vasomotor center, reducing norepinephrine turnover and decreasing central sympathetic outflow, resulting in alterations in sympathetic function and decreased HR and BP. Thus Dexmedetomidine is a useful agent to attenuate the response to Extubation as it provides sedation, hemodynamic stability and does not depress respiration. Although Dexmedetomidine has been used with varying success to attenuate hypertensive tachycardiac response to tracheal Extubation, yet not many studies have evaluated different doses of Dexmedetomidine to attenuate the Extubation response.

The aim of the present study was to evaluate and compare the effect of different doses of Dexmedetomidine on heart rate, blood pressure, oxygen saturation and depth of anaesthesia.

Materials and Methods

The present study was conducted in Department of Anaesthesiology and after approval by institutional ethics committee this study was carried out on 150 patients in the age group of 20 to 60 years. Patients were ASA I-II, scheduled for Lap cholecystectomy.

Inclusion criteria

- 1. Patients between the age group 20-60 years.
- 2. ASA class I-II.
- 3. BMI 18.5-29.9.
- 4. Undergoing Lap cholecystectomy.

Exclusion criteria

- 1. Patient's refusal for participation in the study.
- 2. Patients with ischaemic and/or congestive cardiac disease.
- 3. Patients on Beta blockers, digoxin, anticonvulsants or psychotropic medicines.
- 4. Patients with allergy to study drug.
- 5. If Extubation did not occur within 10 minutes of starting infusion.
- 6. If bradycardia (HR < 50/min) or hypotension (SBP < 80 mm of Hg) occured anytime during study period, patient were excluded from the study.
- 7. If BIS > 60 anytime between starting of infusion and Extubation, patients were excluded from the study.

Methodology

The study commenced after obtaining approval from protocol review committee, institutional ethics committee and written informed patient consent. The enrolled patients fulfilling all the inclusion and exclusion criteria were divided into three groups.

Group A (n=50) 0.5µg/kg of Dexmedetomidine in NS (Total volume 10 ml).

Group B (n=50) 0.75μg/kg of Dexmedetomidine in NS (Total volume 10 ml).

Group C (n=50) 1 μg/kg of Dexmedetomidine in NS (Total volume 10 ml).

Procedure

The anesthetic procedure was explained to the patients enrolled for study and thereafter written consent was taken. Before commencing the surgery a case record form was filled for each patient. All patients were kept nil orally for at least eight hours before the procedure. They were given premedication in the form of tablet alprazolam 0.50mg at HS and tablet ranitidine 150mg on the day of surgery. On arrival to operation theatre, five lead ECG, NIBP, SpO₂ and BIS were attached and baseline parameters noted along with starting of peripheral 18G I.V line. Anesthesia was induced with 5 mg/kg thiopentone IV and 2 μ g/kg fentanyl IV and tracheal intubation was facilitated with 0.5 mg/kg Atracurium IV. Anesthesia was maintained with 0.5%-1.5% isoflurane and 60% nitrous oxide (N₂O) in oxygen. The end-tidal carbon dioxide (ETCO₂) was maintained between 30 and 35 mm Hg. Peripheral arterial oxygen

ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

saturation (SpO₂) and the concentration of end-tidal isoflurane was monitored throughout from anesthesia machine monitor. BP was recorded immediately before the induction of anesthesia and every 10 min during anesthesia using automated noninvasive BP monitor. The HR was monitored by electrocardiography (ECG lead II). The BP and HR were maintained between 80% and 120% of the preoperative values by increasing or decreasing the concentration of isoflurane until completion of surgery. Muscle relaxation was maintained by intermittent boluses of atracurium (0.02 mg/kg). At the beginning of closure of rectus sheath, isoflurane was discontinued and Dexmedetomidine 0.5mcg/kg body weight diluted to 10 ml in normal saline was infused over 10 minutes using infusion pump in Group A patients. Similarly, Group B and Group C patients received Dexmedetomidine 0.75 μ g/kg and 1 μ g/kg body weight diluted to 10 ml in normal saline over 10 minutes respectively using infusion pump. Nitrous oxide was discontinued before Extubation. BIS monitoing was continued till patient was extubated to ensure that depth of anaesthesia is adequate. Residual muscle relaxation was reversed with neostigmine 0.05 mg/kg and glycopyrolate 0.01 mg/kg IV. Patients were extubated when one or more of the following Extubation criteria were fulfilled-

- 1. Sustained head lift for 5 seconds.
- 2. Sustained hand grip for 5 seconds.
- 3. Sustained leg lift for 5 seconds.
- 4. Sustained 'tongue depressor test'.
- 5. Maximum inspiratory pressure 40 to 50 cm H₂O or greater

Outcome Parameters

- A. Pulse rate (PR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), oxygen saturation (SpO₂) and BIS were noted every 10 minutes during surgery, every 30 seconds after start of infusion till Extubation. Thereafter hemodynamic parameters (PR, BP), SpO₂ were recorded every 30 seconds till 5 min and thereafter every 15 min till 2 hours.
- B. Extubation time was noted and Extubation quality was rated using Extubation quality 5-point scale.

Extubation quality 5-point scale

- 1. No coughing.
- 2. Smooth Extubation, minimal coughing.
- 3. Moderate coughing (3 or 4 times).
- 4. Severe coughing (5 to 10 times) and straining.
- 5. Poor Extubation, very uncomfortable (laryngospasm and coughing >10 times).

Any incidence of cough, laryngospasm, bronchospasm or desaturation was noted for a period of 15 min post Extubation.

C. Sedation was evaluated using Ramsay Sedation Scale at 5 minute interval for 30 min and thereafter at 30 min interval for next 90 minutes.

Ramsay sedation scale

- 1. Anxious and agitated, restless.
- 2. Co-operative, oriented, tranquil.
- 3. Responsive to verbal commands, drowsy.
- 4. "Asleep", responsive to light stimulation (loud noise, Tapping).
- 5. Asleep, slow response to stimulation.
- 6. No response to stimulation.
- D. Pain was assessed using VAS scale at 5 minute interval up till 30 min and thereafter at 30 min interval for next 90 minutes. Patients were asked to rate the pain on a scale ranging from 0 to 10.

Statistical analysis

Data was collected and entered in MS Excel 2007. Statistical analysis was performed using Epi info. Normally distributed data was analyzed using a repeat-measures general linear model analysis of variance (ANOVA), whereas non-normally distributed data were analyzed using the Mann–Whitney Utest and categorical data was analyzed using the Chi-square test. For comparison between two groups unpaired t test was applied in normally distributed data. The Bonferroni correction was used to correct for multiple testing at different time points.

ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

Results

Table 1: Group Wise Distribution of Patients

Groups	Description	No. of Patients	Percentage
Α	0.5 µg /kg of Dexmedetomidine in NS (Total volume 10 ml)	50	33.33
В	0.75µg/kg of Dexmedetomidine in NS (Total volume 10 ml)	50	33.33
С	1 μg /kg of Dexmedetomidine in NS (Total volume 10 ml)	50	33.33

The enrolled patients fulfilling all the inclusion and exclusion criteria were divided into three groups with 50 patients in each group. Group A (n=50) $0.5\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml). Group B (n=50) $0.75\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml) Group C (n=50) 1 $\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml).

Table 2: Demographic profile of the three Groups (mean \pm SD)

Parameter				
Age (years)	42.18±11.19	41.69±11.20	43.67± 9.25	.630
Sex (M/F)	8:42	10:40	7:43	.250
BMI (kg/m2)	25.45±2.15	25.35±2.20	25.70±1.85	.555
ASA I/ASA 2	24:26	25:25	26:24	.830

There were more females than males in all the three groups. Mean Age in group A, B and C were 42.18 ± 11.19 , 41.69 ± 11.20 and 43.67 ± 9.25 respectively. All the three groups were comparable with respect to age of the patients (p>0.05). The groups were also comparable in terms of Sex, BMI and ASA grade (p>0.05).

Table 3: Quality of extubation and hemodynamic parameter at extubation of the three groups

		Group B		
Heart rate (bpm), mean \pm SD	90.85±11.45	80.70±11.99	65.8±7.65	< 0.001
SBP (mmHg), mean \pm SD	124.66±10.52	110.40±9.60	102.90±9.50	< 0.001
DBP (mmHg), mean ± SD	84.72±7.70	72.10±7.00	64.06±6.40	< 0.001
MAP (mmHg), mean ± SD	100.50±6.60	86.44±6.40	78.96±6.50	< 0.001
SpO_2 (%), mean \pm SD	98.40±1.12	98.15±0.80	98.95±1.16	0.100
BIS, mean ± SD	76.74±5.04	70.80±3.16	71.29±4.15	< 0.001

After extubation, the overall difference between the three groups is statistically significant (P < 0.001). After 10 min from extubation, there was no difference in HR between Groups A and B (P = 0.025); however, there was significant difference between Groups B and C (P < 0.001). SBP, DBP, and MAP were significantly higher in Group A as compared to Groups B and C. This shows that good attenuation of pressor response was done with higher doses as compared to lower dose, and Group B had more stable hemodynamic without any undue variations.

Table 4: Duration of Surgery and interval between start of Dexmedetomidine Infusion and Extubation (mean ± SD)

	Group A	Group B	Group C	P value
Duration of Surgery	60.20±9.11	61.3333±8.22	55.05±7.94377	.110
Interval between start of Dexmedetomidine Infusion and Extubation	8.85 ± 0.52	8.72± .54	8.70± .55	.065

The groups were comparable in terms of duration of surgery and interval between start of Dexmedetomidine infusion and Extubation (p>0.05).

Table 5: Time of 1st Rescue Analgesia after Extubation in min (mean± SD) and Total No of Rescue Analgesic used

Quality of extubation, n (%)	Group A	Group B	Group C	P value
1	12 (24)	24 (48)	25 (50)	0.003
2	14 (28)	20(40)	20(40)	0.003
3-4	24 (48)	6 (12)	5 (10)	< 0.001
Time of extubation (min), mean±SD	8.32±0.50	8.50±0.40	9.45±0.44	0.055

In group C 25 patients had no coughing at the time of extubation as compared to 24 patients in group B and 12 patients in group A. Both in group B & group C 20 patients had smooth extubation with minimal coughing whereas 14 patients in group A had smooth extubation with minimal coughing. In group B and C only 6 and 5 patients had moderate to severe coughing, whereas in group A , 24 patients had moderate to severe coughing. In all the three groups none of the patients had poor extubation as per the extubation quality- 5 point scale. The difference in quality of extubation was significant between group A & group B and between group A & group C whereas it was comparable between group B & group C.

ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

Discussion

It is a well-established fact that when compared to intubation complications are three times higher in frequency during and after extubation [5, 10, 11]. There is a strong recommendation to maintain hemodynamics during extubation within 20% of normal awake value particularly in high risk patients. The cardiovascular changes to these critical points are more brisk in poorly controlled hypertensives than do normotensives or well-controlled hypertensives ⁵. Laparoscopic surgeries under general anesthesia are associated with unique hemodynamic changes in the form of decreased venous return and increased systemic vascular resistance leading to systemic hypertension. This increases the need for deepening the plane of anesthesia and requires the use of vasodilators to counteract the rising blood pressures. IAPs higher than 10 mmHg due to peritoneal insufflation with CO₂ induce significant alterations in hemodynamic, characterized by decrease in venous return, increase in arterial pressure and elevation of systemic and pulmonary vascular resistance and HR ^[12, 13]. These hemodynamic changes are even more pronounced and challenging in hypertensive patients than normotensive patients during general anesthesia and require more anesthetic interventions to get hemodynamic stability ^[14].

In the past, various pharmacological agents have been used for the attenuation of intubation and Extubation response. Extubation has always received less emphasis than Intubation in past studies. Various agents which have been used for attenuation of Extubation response include diltiazem [15], lignocaine [16], labetalol [17], nicardipine [18] and opioids [19] as sole agent or in comparison with each other. Dexmedetomidine is a newly emerging drug which has been extensively studied for attenuation of both intubation and Extubation response. Dexmedetomidine is a highly selective $\alpha 2$ agonist that has been shown to have sedative, analgesic and anaesthetic sparing effects. It causes a dose-dependent decrease in arterial blood pressure and heart rate, associated with decrease in serum norepinephrine concentration.

It was observed that Dexmedetomidine used in premedication supresses the sympathetic activation which is due to the endotracheal intubation [20]. Güler *et al.* found that the increase in blood pressure and heart rate during the Extubation is decreased and the quality of Extubation is increased by Dexmedetomidine [21]. The enrolled patients fulfilling all the inclusion and exclusion criteria were divided into three groups with 50 patients in each group. Group A (n=50) recieved $0.5\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml). Group B (n=50) recieved $0.75\mu g/kg$ of Dexmedetomidine in NS (Total volume 10 ml). There were more females than males in all the three groups. Mean Age in group A, B and C were 42.18 ± 11.19 , 41.69 ± 11.20 and 43.67 ± 9.25 respectively. All the three groups were comparable with respect to age of the patients (p>0.05). The groups were also comparable in terms of Sex, BMI and ASA grade (p>0.05).

We found that Dexmedetomidine in doses of 0.75μg/kg and 1μg /kg effectively attenuated the Extubation response where as in dose of 0.5μg/kg the response was not effectively attenuated. There was decrease in HR, SBP, DBP and MAP with Dexmedetomidine in doses of 0.75μg /kg and 1μg/kg during infusion upto Extubation whereas all these parameters increased in group A in which Dexmedetomidine was used in dose of 0.5 μg/kg. In a study done by Celik *et al.* [22] similar results were obtained where they concluded that to control haemodynamic responses to tracheal intubation, Dexmedetomidine 1 μg. kg-1 is more effective than Dexmedetomidine 0.5 μg.kg-1. Martina *et al.* [23] studied the effect of 2 doses of Dexmedetomidine 0.3ug/kg & 0.6ug/kg, fentanyl 2ug/kg & saline to attenuate the intubation response. They found that in all groups BP & HR increased after tracheal intubation. However, increase in BP & HR was significantly less in Dexmedetomidine group which received 0.6μg/kg than in saline group.

In group C 25 patients had no coughing at the time of Extubation as compared to 24 patients in group B and 12 in group A. Both in group B & group C 20 patients had smooth Extubation with minimal coughing whereas 14 patients in group A had smooth Extubation with minimal coughing. The difference in quality of Extubation was significant between group A & group B and between group A & group C whereas it was comparable between group B & group C. Bindu *et al.* [24] studied the effect of intravenous Dexmedetomidine infusion 0.75 mcg/kg given 15 min prior to Extubation and concluded that Dexmedetomidine stabilises hemodynamics' and facilitates smooth Extubation, but there was bradycardia in 13 patients out of 25 patients. Aksu R *et al.* [25] compared the effects of Dexmedetomidine (0.5 mcg/kg) and fentanyl (1 mcg/kg) in patients undergoing rhinoplasty and concluded that Dexmedetomidine was more effective in attenuating airway reflex responses to tracheal Extubation and maintaining haemodynamic stability compared to fentanyl but was associated with bradycardia in two patients out of 20 patients.

Conclusion

The attenuation of Extubation response was almost similar with Dexmedetomidine in dose of $0.75\mu g/kg$ and $1\mu g/kg$. However, with increase in dose from $0.75\mu g/kg$ to $1\mu g/kg$ there was significant increase in the side effects in the form of bradycardia (p<0.05). Also, the quality of Extubation was much better with Dexmedetomidine in dose of $0.75\mu g/kg$ and $1\mu g/kg$ as compared to Dexmedetomidine in dose of $0.5\mu g/kg$ (p<0.05). So, we concluded that $0.75\mu g/kg$ is the single best dose of Dexmedetomidine for attenuation of Extubation response.

ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

References

- 1. Antoniou SA, Antoniou GA, Koch OO, Pointner R, Granderath FA. Meta-analysis of laparoscopic vs open cholecystectomy in elderly patients. World Journal of Gastroenterology: WJG. 2014 Dec:20(46):17-626.
- 2. Ramos LP, Araújo RB, Castro M, Ramos MR, Iglesias AC. Hemodynamic evaluation of elderly patients during laparoscopic cholecystectomy. Revista do Colégio Brasileiro de Cirurgiões, 2018 May, 45.
- 3. Manohar Harison Madia M, Kumar Singh A, Manohar Wrangler Richi S, Badan Singh R. A comparison of perioperative hemodynamic stability with amlodipine and telmisartan during laparoscopic cholecystectomy in known hypertensive patients. AJMR. 2019;8:AN04-7.
- 4. Anchala R, Kannuri NK, Pant H, Khan H, Franco OH, Di Angelantonio E, *et al.* Hypertension in India: a systematic review and meta-analysis of prevalence, awareness and control of hypertension. Journal of hypertension. 2014 Jun;32(6):11-70.
- 5. Howell SJ, Sear JW, Foex P. Hypertension, hypertensive heart disease and perioperative cardiac risk. British journal of anaesthesia. 2004 Apr;92(4):570-83.
- 6. Turan G, Ozgultekin A, Turan C, Dincer E, Yuksel G. Advantageous effects of dexmedetomidine on haemodynamic and recovery responses during extubation for intracranial surgery. European journal of Anaesthesiology. 2008 Oct;25(10):816-20.
- 7. Lapage KG, Wouters PF. The patient with hypertension undergoing surgery. Current opinion in anaesthesiology. 2016 Jun 1;29(3):397-402.
- 8. Venn RM, Grounds RM. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. British journal of anaesthesia. 2001 Nov;87(5):684-90.
- 9. Jain D, Khan R, Maroof M. Effect of dexmedetomidine on stress response to extubation. Internet J Anesthesiol., 2009, 21(1).
- Antony D, Davies CV, Thomas MK, Shenoy U, Mahesh V, Puthumana KJ. The effect of two different doses of dexmedetomidine to attenuate cardiovascular and airway responses to tracheal extubation: A double blind randomized controlled trial. Int J Med Res Rev. 2016 Aug;4(8):1392-403.
- 11. Charlson ME, MacKenzie CR, Gold JP, Ales KL, Topkins M, Shires GT. Preoperative characteristics predicting intraoperative hypotension and hypertension among hypertensives and diabetics undergoing noncardiac surgery. Annals of surgery. 1990 Jul;212(1):66.
- 12. Schauer P, Luna J, Ghiatas AA, Glen ME, Warren JM, Sirinek KR. Pulmonary function after laparoscopic cholecystectomy. Surgery. 1993 Aug;114(2):389-97.
- 13. Latimer RG, Dickman M, Day WC, Gunn ML, Schmidt CD. Ventilatory patterns and pulmonary complications after upper abdominal surgery determined by preoperative and postoperative computerized spirometry and blood gas analysis. The American Journal of Surgery. 1971 Nov;122(5):622-32.
- 14. Kvolik S, Brozović G, Rakipović-Stojanović A, Drenjančević-Haršanji I, Kristek J, Azenić-Venžera D, *et al.* More hemodynamic changes in hypertensive versus non-hypertensive patients undergoing breast cancer surgery in general anesthesia-a prospective clinical study. Medicinski Glasnik. 2009;6(1):97-103.
- 15. Nishina K, Mikawa K, Maekawa N, Obara H. Attenuation of cardiovascular responses to tracheal extubation with diltiazem. Anesthesia & Analgesia. 1995 Jun;80(6):1217-22.
- 16. Fujii Y, Saitoh Y, Takahashi S, Toyooka H. Retracted Article: Combined diltiazem and lidocaine reduces cardiovascular responses to tracheal extubation and anesthesia emergence in hypertensive patients. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 1999 Oct;46:952-6.
- 17. Muzzi DA, Black S, Losasso TJ, Cucchiara RF. Labetalol and esmolol in the control of hypertension after intracranial surgery. Anesthesia & Analgesia. 1990 Jan;70(1):68-71.
- 18. Kovac AL, Masiongale A. Comparison of nicardipine versus esmolol in attenuating the hemodynamic responses to anesthesia emergence and extubation. Journal of cardiothoracic and vascular anesthesia. 2007 Feb;21(1):45-50.
- 19. Sadegi M, Firozian A, Ghafari MH, Esfehani F. Comparison in effect of intravenous alfentanil and lidocaine on airway-circulatory reflexes during extubation. Int J Pharmacol. 2008;4(3):223-6.
- 20. Erkola O, Korttila K, Aho M, Haasio J, Aantaa R, Kallio A. Comparison of intramuscular dexmedetomidine and midazolam premedication for elective abdominal hysterectomy. Anesthesia & Analgesia. 1994 Oct;79(4):646-53.
- 21. Güler G, Akin A, Tosun Z, Eskitaşoğlu E. During the extubation the effects of dexmedetomidine on cardiovascular changes and quality of extubation in the old patients undergoing cataract surgery. Turk J Anaesth. 2005;33:18-23.
- 22. Celik M, Orhon Z, Yüzer S, Sen B. Different Doses of Dexmedetomidine on Controlling Haemodynamic Responses to Tracheal Intubation. The Internet Journal of Anesthesiology, 2009, 27(2).

ISSN:0975 -3583.0976-2833 VOL14, ISSUE 05, 2023

- 23. Also M, Lehtinen AM, Erkola O, Kallio A, Korttila K. The effect of intravenously administered dexmedetomidine on perioperative hemodynamics and isoflurane requirements in patients undergoing abdominal hysterectomy. Anesthesiology. 1991 Jun;74(6):997-1002.
- 24. Bindu B, Pasupuleti S, Gowd UP, Gorre V, Murthy RR, Laxmi MB. A double blind, randomized, controlled trial to study the effect of dexmedetomidine on hemodynamic and recovery responses during tracheal extubation. Journal of Anaesthesiology Clinical Pharmacology. 2013 Apr;29(2):162-7.
- 25. Aksu R, Akin A, Biçer C, Esmaoğlu A, Tosun Z, Boyaci A. Comparison of the effects of dexmedetomidine versus fentanyl on airway reflexes and hemodynamic responses to tracheal extubation during rhinoplasty: A double-blind, randomized, controlled study. Current therapeutic research. 2009 Jun;70(3):209-20.