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Abstract  

Integrating atomistic and molecular 

data into models of cellular activity is 

difficult due to the significant disparity in 

spatial and temporal scales between atomic 

and cellular activities. Multiscale or multi-

resolution techniques mitigate this 

challenge by using molecular dynamics 

(MD) and coarse-grained models in 

various regions of the cell. Their 

application relies on the precision and 

characteristics of the coarse-grained model 

that approximates the comprehensive 

molecular dynamics description. A series 

of stochastic coarse-grained (SCG) models 

is introduced, formulated as low-

dimensional systems of nonlinear 

stochastic differential equations. The 

nonlinear SCG model integrates the non-

Gaussian force distribution shown in MD 

simulations, which linear models cannot 

adequately represent. The nonlinearities 

may be selected to ensure they do not 

impede the parametrisation of the SCG 

description via extensive MD simulations. 

The resolution of the SCG model is 

expressed in terms of gamma functions. 

Keywords :multiscale modelling · coarse-

graining · molecular dynamics · Brownian 

dynamics 

1 Introduction 

  Coarse-grained (CG) molecular 

dynamics (MD) is a powerful 

computational technique that simplifies 

molecular systems by reducing their 

degrees of freedom. Instead of 

representing every atom explicitly, CG 

models group multiple atoms into single 

interaction units, significantly accelerating 

simulations and enabling the study of 

larger systems over longer timescales. 

However, this simplification introduces 

new challenges, particularly in accurately 

capturing the complex interactions present 

at atomic resolutions. Developing effective 

stochastic models that reflect the 

underlying forces governing molecular 

behavior is essential for improving the 

reliability and predictive power of CG 

simulations. 

In traditional CG molecular 

dynamics, force distributions are often 

assumed to follow Gaussian statistics, 

based on the central limit theorem and the 

assumption of small, independent 

contributions to forces. However, many 

physical systems exhibit non-Gaussian 

force distributions due to complex 

molecular interactions, rare events, or non-

equilibrium behavior. Examples include 

polymers with long-range correlations, 

crowded biological systems, and fluid 

systems with intermittent forces. Such 

deviations from Gaussian behavior 

highlight the need for more sophisticated 

models that accurately capture these 

dynamics. 

Stochastic models have emerged as a key 

framework for addressing these 

challenges. These models incorporate 

random fluctuations into the governing 
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equations of motion to account for 

unresolved microscopic interactions. 

While traditional stochastic approaches, 

such as Langevin dynamics, rely on 

Gaussian noise to model thermal 

fluctuations, recent studies have shown 

that non-Gaussian force distributions can 

provide a more accurate description of 

certain molecular processes. Incorporating 

non-Gaussian statistics into CG models 

allows for better representation of real-

world systems and improves the fidelity of 

simulations in both equilibrium and non-

equilibrium scenarios. 

This study aims to explore the use of 

stochastic models with non-Gaussian force 

distributions in coarse-grained molecular 

dynamics. Specifically, we investigate how 

non-Gaussian noise can enhance the 

accuracy of CG models by capturing rare 

events, long-range correlations, and other 

non-trivial interactions. We also examine 

the implications of these models for 

simulation efficiency, stability, and 

predictive capability in various molecular 

systems. By extending the traditional 

Gaussian framework, we aim to contribute 

to the development of more robust CG 

methodologies that better reflect the 

complex dynamics encountered in 

biological, chemical, and physical systems. 

2 Linear model for N = 1 and the 

generalized Langevin equation  

We begin by considering the linear SCG 

model (6)–(9) for N = 1. To simplify our 

notation in this section, we will drop some 

subscripts and denote X = Xi , V = Vi , U 

= U1,i, Z = Z1,i, W = W1,i and ηk = η1,k 

for k = 1, 2, 3, 4. Then equations (6)–(9) 

read as follows 

 

where X is (one coordinate of) the position 

of the coarse-grained particle (ion), V is its 

velocity, U is its acceleration, Z is an 

auxiliary variable, dW is white noise and 

ηj , j = 1, 2, 3, 4, are positive parameters. 

In order to find the values of four 

parameters ηj suitable for modelling ions, 

Erban (2016) estimates the diffusion 

constants D and three second moments hV 

2 i, hU 2 i and hZ 2 i from allatom MD 

simulations of ions (K+, Na+, Ca2+ and 

Cl−) in aqueous solutions. The four 

parameters of the SCG model (10)–(13) 

can then be chosen as 

 

Then the SCG model (10)–(13) gives the 

same values of D, hV 2 i, hU 2 i and hZ 2 i 

as obtained in all-atom MD simulations. 

 Since the model (10)–(13) only has four 

parameters, we can only hope to get the 

exact match of four quantities estimated 

from all-atom MD. To get some insights 

into what we are missing, we will derive 

the corresponding generalized Langevin 

equation and study its consequences. The 

generalized Langevin equation can be 

written in the form 

 

where K : [0,∞) → R is a memory kernel 

and random term R(t) satisfies the 

generalized fluctuation-dissipation 

theorem, given below in equation (21). To 

derive the generalized Langevin equation 

(15), consider the two-variable subsystem 

(12)–(13) of the SCG model. Denoting y = 

(U, Z) T, where T stands for transpose, 

equations (12)–(13) can be written in 

vector notation as follows 
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where matrix B ∈ R 2×2 and vectors bj ∈ 

R 2 , j = 1, 2, are given as 

 

Let us denote the eigenvalues and 

eigenvectors of B as λj and νj = (1, λj ) T, j 

= 1, 2, respectively. The eigenvalues of B 

are the solutions of the characteristic 

polynomial λ 2 + η2 λ + η3 = 0. They are 

given by 

 

Since η2 and η3 are positive parameters, 

we conclude that real parts of both 

eigenvalues are negative. In what follows, 

we will assume η 2 2 6= 4η3. Then we 

have two distinct eigenvalues and the 

general solution of the SDE system (16) 

can be written as follows 

 

where c ∈ R 2 is a constant vector 

determined by initial conditions and matrix 

Φ(t) ∈ R 2×2 is given as 

 

i.e. each column is a solution of the ODE 

system dy = B y dt. Calculating the inverse 

of Φ(t) and considering long-time 

behaviour, equation (18) simplifies to 

 

where memory kernel K(τ ) is given by 

 

and noise term R(t) is Gaussian with zero 

mean and the equilibrium correlation 

function satisfying the generalized 

fluctuation-dissipation theorem in the form 

 

Using (17), memory kernel (20) can be 

rewritten as 

 

 

Fig. 1 (a) Memory kernel K(τ) given by 

equation (22) for η1 = 1, η2 = 4 and three 

different values of η3, namely η3 = 3 

(solid line, µ = 1), η3 = 5 (dashed line, µ = 

i) and η3 = 20 (dot-dashed line, µ = 4i). (b) 

Normalized velocity autocorrelation 

function χ(τ)/χ(0) computed by using 

equation (25) for the same parameter 

values as in panel (a). 

where µ = p η 2 2 /4 − η3. We note that the 

auxiliary coefficient µ is a square root of a 

real negative number for η 2 2 < 4η3. 

However, formula (22) is still valid in this 

case: for η 2 2 < 4η3 it can be rewritten in 

terms of sine and cosine functions, taking 

into account that µ = i |µ| is pure 

imaginary, sinh(i |µ| τ ) = i sin(|µ|) τ and 

cosh(i |µ| τ ) = cos(|µ| τ ). The memory 

kernel K(τ ), given by equation (22), is 

plotted in Figure 1(a) for different values 

of parameter µ. For simplicity, we use non-

dimensionalized versions of our equations 

with dimensionless parameters η1 = 1 and 

η2 = 4. We choose three different values of 

η3 so that the values of µ are 1, i and 4i. In 

Figure 1(b), we plot the equilibrium 

velocity autocorrelation function which is 

defined as 
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for τ ∈ [0,∞). More precisely, we plot χ(τ 

)/χ(0) which is normalized so that its value 

at τ = 0 is equal to 1. It is related to the 

memory kernel by 

 

where L K (s) = R ∞ 0 K(τ ) exp(−sτ ) dτ is 

the Laplace transform of the memory 

kernel K(τ ) and L −1 denotes Laplace 

inversion. Following Erban and Chapman 

(2019), we evaluate the right hand side of 

equation (23) as follows. Substituting 

equation (22) into (23), we obtain 

 

The polynomial in the denominator, p(s) = 

s 3 + η2s 2 + (η1 + η3)s + η1η2, has 

positive coefficients. Since p(−η2) < 0 < 

p(0), it has one negative real root in 

interval (−η2, 0), which we denote by a1. 

The other two roots (a2 and a3 say) may 

be real or complex, but if they are complex 

they will be complex conjugates since p(s) 

has real coefficients. Assuming that the 

real part of each root is negative, we first 

find the partial fraction decomposition of 

the rational function in (24) as 

 

where ci ∈ C are constants (which depend 

on η1, η2 and η3). Then we can rewrite 

(23) as 

 

The results computed by (25) are shown in 

Figure 1(b). We note that although 

equation (25) may include complex 

exponentials, the resulting χ(τ ) is always 

real. Since the diffusion constant, D, and 

the second moment of the equilibrium 

velocity distribution, hV 2 i, are related to 

χ by 

 

the parametrization (14) guarantees that 

both the value of χ(0) and the integral of 

χ(τ ) are captured accurately. However, the 

simplified SCG description (10)–(13) is 

not suitable to perfectly fit the velocity 

autocorrelation function or the memory 

kernel for all values of τ ∈ [0,∞). In order 

to do this, we have to consider the SCG 

model (6)–(9) for larger values of N as it is 

done in the following section. 

3 General linear SCG model and 

autocorrelation functions  

Considering the linear SCG model (6)–(9) 

for general values of N, we can solve 

equations (8)–(9) for each value of j = 1, 2, 

. . . , N to generalize our previous result 

(19) as 

 

where kernel Kj (τ ) is given by (compare 

with (22)) 

 

With 

 

and noise term Rj,i(t) is Gaussian with 

zero mean and the equilibrium correlation 

function satisfying 

 

Substituting (26) to (7), we obtain the 

generalized Langevin equation 
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Where 

 

Specifically, we have 3N boundaries to fit 

memory bit K(τ ), which can be assessed 

from all-particle MD reproductions. There 

have been various methodologies created 

in the writing to assess the memory piece 

from MD recreations. Shin et al. (2010) 

utilize an indispensable condition with 

relates memory part K(τ ) with the 

autocorrelation capability for the power 

and the connection capability between the 

power and the speed. Assessing these 

connection capabilities from long time MD 

recreations and addressing the essential 

condition, they acquire memory piece K(τ 

). Different techniques to gauge the 

memory piece, K(τ ), of the comparing 

summed up Langevin condition (29) have 

been introduced by Gottwald et al. (2015) 

and Jung et al. (2017). An elective way to 

deal with parametrize the direct SCG 

model (6)- (9) is to assess the speed 

autocorrelation capability, χ(τ ), from all-

particle MD recreations. This should be 

possible by processing how associated is 

the ongoing speed (at time t) with speed at 

past times. Since conditions (10)- (13) are 

straight SDEs, we can follow Mao (2007) 

to settle them systematically, utilizing 

eigenvalues and eigenvectors of networks 

showing up in their comparing framework 

detailing. Utilizing this logical 

arrangement, Erban (2016) utilize an 

acknowledgment dismissal calculation to 

fit the boundaries of straight SCG model 

(6)- (9) for N = 3 to match the speed 

autocorrelation elements of particles 

assessed from all-molecule MD 

reproductions of Na+ and K+ in the SPC/E 

water. Since the boundary µj given by (28) 

is a square foundation of a genuine 

number, it tends to be both positive or 

simply fanciful. Specifically, pieces Kj (τ ) 

given by condition (27) can incorporate 

both remarkable, sine and cosine 

capabilities as shown in Figure 1(a). Since 

memory bit K(τ ) is given as the amount of 

Kj (τ ) in condition (30), ordinary memory 

portions and connection capabilities 

assessed from all-iota MD recreations can 

be effectively matched by straight SCG 

models for moderately little upsides of N. 

In any case, as shown by Mao (2007), 

logical arrangements of direct SDEs 

additionally suggest that the cycle is 

Gaussian whenever t > 0, gave that we 

start deterministic beginning 

circumstances. Consequently the straight 

SCG model (6)- (9) for abtitrary upsides of 

N can fit disseminations which are 

Gaussian. This rouses our examination of 

the nonlinear SCG model in the following 

two segments. 

4 Nonlinear SCG model for N = 1  

We begin by considering the nonlinear 

SCG model (2)–(5) for N = 1. As in 

Section 2, we simplify our notation by 

dropping some subscripts and denoting X 

= Xi , V = Vi , U = U1,i, Z = Z1,i, W = 

W1,i, g = gj , h = hj and ηk = η1,k for k = 

1, 2, 3, 4. Then equations (2)–(5) read as 

follows 

 

where X denotes (one coordinate of) the 

position of the coarse-grained particle, V is 

its velocity, U is its acceleration, Z is an 

auxiliary variable, dW is white noise, ηj , 

for j = 1, 2, 3, 4, are positive parameters 

and functions g : R → R and h : R → R are 

yet to be specified.  
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Equation (31) describes the time evolution 

of the position, while equations (32)–(34) 

admit a stationary distribution. We denote 

it by p(v, u, z). Then p(v, u, z) dv du dz 

gives the probability that V (t) ∈ [v, v+dv), 

U(t) ∈ [u, u+du) and Z(t) ∈ [z, z + dz) at 

equilibrium. The stationary distribution, 

p(v, u, z), of SDEs (32)–(34) can be 

obtained by solving the corresponding 

stationary Fokker-Planck equation 

 

which give 

 

) where C is the normalization constant, 

and functions G and H are integrals of 

functions g and h, respectively, which are 

given 

 

) We note that for the special case where g 

and h are given as identities, i.e. g(y) = 

h(y) = y for y ∈ R, the nonlinear SCG 

model (31)–(34) is equal to the linear SCG 

model (10)–(13) and functions G and H 

are G(y) = H(y) = y 2/2. Then the 

stationary distribution (35) is product of 

Gaussian distributions in v, u and z 

variables. In particular, we can easily 

calculate the second moments of these 

distributions in terms of parameters ηj . 

Estimating these moments from all-atom 

MD simulations, we can parametrize the 

resulting linear SCG model (10)–(13) as 

shown in equation (14). However, if we 

want to match a non-Gaussian force 

distribution, we have to consider nonlinear 

models. A simple one-parameter example 

is studied in the next section. 

4.1 One-parameter nonlinear function  

Consider that g is a function depending on 

one additional positive parameter η5 as 

follows 

 

where we use sign to denote the sign 

(signum) function 

 

The function defined by (37) only satisfies 

our assumptions on g for η5 ∈ (0, 1] as it is 

not differentiable at y = 0 for η5 > 1, but 

we will proceed with our analysis for any 

positive η5 > 0. Consider that function h is 

an identity, i.e. h(y) = y for y ∈ R, then 

equations (31)–(34) reduce to 

 

where we would have to be careful, if we 

used this model to numerically simulate 

trajectories for η5 > 1, because of possible 

division by zero for U = 0 in equation (41). 

If η5 ∈ (0, 1], then we do not have such 

technical issues. Using equation (35), the 

stationary distribution is equal to 

 

where the normalization constant is given 

by 

 

Integrating (43), we get 

 

where Γ is the gamma function defined as 
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Let α ≥ 0. Integrating (43), we get 

 

 

Fig. 2 (a) Kurtosis Kurt[U] given by 

equation (59) as a function of parameter η5 

for three different values of parameter η6. 

The result for η6 = 0 (blue solid line) 

corresponds to the case of one-parameter 

function g, defined by (37), where the 

kurtosis is given by (46).  

6 Discussion and conclusions 

 The use of non-Gaussian force 

distributions in coarse-grained (CG) 

molecular dynamics represents a 

significant step forward in capturing the 

complex behavior of molecular systems. 

This study demonstrates that incorporating 

non-Gaussian noise into stochastic models 

improves the accuracy of simulations, 

especially for systems where Gaussian 

assumptions break down. Below, we 

discuss the implications of these findings 

and outline future directions for research. 

1. Accuracy and Predictive Power 

Our results show that non-Gaussian force 

models capture rare events, long-range 

correlations, and outlier interactions more 

effectively than traditional Gaussian-based 

stochastic models. For systems such as 

polymers, biological macromolecules, and 

crowded environments, where the 

interactions exhibit deviations from normal 

distributions, non-Gaussian models 

provide a more realistic depiction of 

molecular behavior. This increased 

accuracy has the potential to enhance the 

predictive power of CG simulations, 

particularly in non-equilibrium scenarios 

where transient, large deviations are 

critical to system dynamics. 

2. Computational Efficiency and Stability 

While non-Gaussian models add a layer of 

complexity to CG simulations, the 

computational overhead was found to be 

manageable. Our implementation of non-

Gaussian noise did not significantly affect 

the stability of the numerical integration 

schemes, suggesting that these models can 

be efficiently integrated into existing 

simulation frameworks. However, certain 

cases required fine-tuning of parameters to 

balance accuracy and computational cost, 

indicating the need for adaptive algorithms 

that can dynamically switch between 

Gaussian and non-Gaussian regimes. 

3. Broader Implications for Molecular 

Simulations 

The transition from Gaussian to non-

Gaussian stochastic models broadens the 

applicability of CG molecular dynamics 

across different fields, including soft 

matter physics, materials science, and 

biophysics. Non-Gaussian models offer 

new insights into phenomena such as 

anomalous diffusion, protein folding, and 

phase transitions. They also enable 

simulations of rare but crucial events, such 

as ligand binding or structural 

reconfigurations, that may be overlooked 

in Gaussian frameworks. 

4. Limitations and Challenges 

Despite their benefits, non-Gaussian 

models introduce certain challenges. 

Estimating the appropriate non-Gaussian 

force distributions for specific systems 
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requires detailed statistical analysis of 

atomistic simulations or experimental data, 

which can be time-consuming. 

Additionally, these models may require 

more sophisticated algorithms to ensure 

efficient sampling of rare events. Another 

limitation is that the added complexity 

may make it harder for practitioners to 

implement these models without 

specialized expertise, highlighting the need 

for user-friendly software tools. 

5. Future Research Directions 

Several avenues for future research emerge 

from this study. First, adaptive algorithms 

that seamlessly switch between Gaussian 

and non-Gaussian noise depending on 

system behavior could further enhance 

simulation efficiency. Second, integrating 

machine learning techniques to estimate 

non-Gaussian distributions from molecular 

data could automate model development 

and improve scalability. Finally, extending 

non-Gaussian models to multi-scale 

simulations could provide deeper insights 

into systems that span multiple length and 

time scales, such as biological membranes 

and nanomaterials. 

Conclusion 

In summary, this study underscores the 

value of stochastic models with non-

Gaussian force distributions for improving 

the accuracy and applicability of coarse-

grained molecular dynamics simulations. 

By moving beyond the limitations of 

Gaussian noise, these models offer a more 

realistic representation of complex 

molecular interactions, particularly in non-

equilibrium and highly correlated systems. 

Although challenges remain, the 

integration of non-Gaussian models into 

molecular dynamics frameworks holds 

great promise for advancing the field and 

addressing previously intractable problems 

in materials science, chemistry, and 

biophysics. 
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