Original Research Article

Comparison of pressure support ventilation pro mode with manual assisted ventilation on emergence time, hemodynamics and ventilation mechanics during extubation after general anaesthesia: A randomized controlled trial

Dr. Simranjeet Singh¹ (Assistant Professor), Dr. Renoxy Bansal² (Senior Resident), Dr. Manvir Singh³ (Assistant Professor) & Dr. Ajay Wahi⁴ (Professor)

Department of Anaesthesiology, Gian Sagar Hospital & Medical College, Jhansla, Punjab^{1,3&4}

Department of Anaesthesiology, Vardhaman Mahavir Medical College, New Delhi²

Corresponding Author: Dr. Manvir Singh

Abstract

Background & Methods: The aim of the study is to Compare pressure support ventilation pro mode with manual assisted ventilation on emergence time, hemodynamics and ventilation mechanics during extubation after general anaesthesia. To our knowledge there is no study comparing pressure support ventilation with manual assisted ventilation in intubated patients during emergence and extubation. Although studies have shown favorable results for weaning of patients in ICU.

Results: Scor- The chi-square statistic is 6.2196. The p-value is .026443. The result is significant at p < .05. PLP - The chi-square statistic is 6.2787. The p-value is .049765. The result is not significant at p < .05.

Conclusion: The choice of ventilation strategies during GA is critical for optimizing patient outcomes and minimizing complications. Tailoring these strategies to individual patient characteristics -such as age, comorbidities, and type of surgery- ensures efficacy and safety. Large-scale RCTs should focus on diverse patient populations and incorporate advanced technologies to refine ventilation management.

Keywords: pressure, ventilation, hemodynamics, extubation & anaesthesia.

Study Design: Prospective Randomized Trial.

Introduction

General anesthesia (GA) is a medical state induced to facilitate surgical procedures, ensuring the patient remains unconscious, immobile, and free from pain. The administration of GA involves a multifaceted approach, with ventilation strategies playing a pivotal role in the overall management of anesthesia. Adequate ventilation is crucial not only for the maintenance of normal physiological functions but also for the prevention of complications during and after surgery [1].

The primary goal of ventilation during GA is to ensure sufficient oxygen delivery and carbon dioxide removal [2]. Historically, traditional methods such as manual ventilation and the use of endotracheal tubes have been standard practices. However, advancements in anesthesia technology have led to the development of various ventilation strategies, including volume-controlled mechanical ventilation, pressure-controlled ventilation (PCV), and adaptive support ventilation [3]. Each of these methods presents unique advantages and limitations that can impact patient outcomes, particularly in high-risk populations such as those with respiratory comorbidities or in prolonged surgical procedures [4,5].

The importance of selecting an appropriate ventilation strategy cannot be overstated (Figure 1). Studies have shown that inadequate ventilation can lead to hypoxemia, hypercapnia, and even respiratory failure, resulting in increased morbidity and mortality rates [6]. Furthermore, the choice of ventilation strategy may influence intraoperative hemodynamics, the incidence of PPCs, and the duration of recovery [7]. For instance, studies have demonstrated that patients who receive protective lung ventilation (PLV) strategies, which are characterized by lower tidal volumes and optimal positive end-expiratory pressure (PEEP), exhibit improved respiratory outcomes compared to those receiving conventional ventilation techniques [8].

Manual assisted ventilation has been used for a long time during extubation after general anaesthesia. During emergence from anaesthesia hemodynamic derangements like tachycardia, hypertension and arrhythmias can occur. Coughing against manual breaths, bronchospasm and dyssynchronized assistance in ventilation can lead to rise in airway pressures and patient discomfort [9]. All these derangements are cradle for complications like adverse cardiac events, pulmonary edema, pneumothorax, delayed extubation and awareness. Pressure support ventilation decreases the work of breathing by providing the patient with positive airway pressure during the inspiratory phase [10]. By synchronizing pressure support ventilation and monitoring of airway mechanics we can decrease several of the above mentioned adverse events during weaning. Pressure support ventilation is already being used in intensive care units to improve patient-ventilator synchrony and facilitate weaning. An anaesthesia machine that employs this mode of ventilation can now be used to allow smooth inductions, emergence, and maintenance of anesthesia while the patient is mechanically ventilated [11].

Psv pro mode can allow the patient to take spontaneous breaths, when appropriate, without fighting the ventilator [12]. In psv mode the patient imposes his or her respiratory rate and inspiratory time. One of the potential advantages of psv is a better patient-ventilator synchrony and the associated decrease in work of breathing and improved breathing comfort. That's why psv is used to enable a smooth transition between apnea and spontaneous

ventilation in anaesthesia. Manual assisted breathing is often used during general anaesthesia, but may provide less effective gas exchange than pressure support mode of ventilation [13]. Hypercapnic acidosis and an increased work of breathing can occur during general anaesthesia both in healthy and non-healthy patients.

Objective of the study: We are proposing a randomized controlled double blinded study to compare pressure support ventilation pro mode with manual assisted ventilation on emergence time, hemodynamics and ventilation mechanics during extubation after general anaesthesia.

Material and Methods

Total 100 Sample size was based on previous studies, Place of study: gian sagar medical college and hospital for six months.

Inclusion and exclusion criteria: 100 ASA physical status 1 and 2 patients scheduled for elective surgery under general anaesthesia with endotracheal intubation and mechanical ventilation were included in this study. Exclusion criteria was emergency procedures, reactive airway diseases, obesity, hypertension.

Detail of procedure and safety measures for patient: General anaesthesia was induced according to standard protocol and patient intubated using endotracheal tube. During extubation nitrous oxide was stopped after last incision, isoflurane after dressing, laryngoscopy was done to see posterior pharyngeal wall movements and reversal was given. Monitoring included electrocardiography, heart rate, mean arterial blood pressure (MAP) (monitored noninvasively), pulse oximetry (spo2), end expiratory concentrations of carbon dioxide (PETCO2), VTE, peak airway pressures, breathing pattern and respiratory rate. Baseline readings were taken at the end of anaesthetic agent administration and then every minute till extubation.

Intended intervention: In PSV-group patients undergo PSV (inspiratory pressure level was set to obtain a tidal volume between 7–8 ml/kg and respiratory rate between 10–16 breaths /minute according to ETCO2 (35-40), inspiratory trigger was fixed at –2 cmh2o. In other group patient was assisted with intermittent manual ventilations after registering spontaneous breaths on ETCO2 and ventilator monitors. Although the staff members who collected data during surgery were aware of the group assignments, end points assessors were unaware of these assignments throughout the study. At the end of surgery, the extubation time was from stopping of anaesthetic agent administration till removal of endotracheal tube and the emergence time was defined as the time to obtain a 10 point score on a five questions test. Each of the following items; 1) name 2) date of surgery; 3) day of the week; 4) address of the patient; 5) month of birth. Simple addition, will be done scored 0 (no response), 1 (inexplicit response) or 2 (good response).

Statistical analysis: In operating room, patients were allocated randomly into two groups (MAV and PSV) using computer based randomization algorithm. Following the intention-to-treat principle, all randomized patients were included in these analyses. Continuous variables were summarized as means \pm SD or median and interquartile ranges (IQR) when appropriate and categorical variables as absolute frequencies and percentages. The Chi-squared, Student's

t and Wilcoxon tests were used to compare the two groups regarding categorical and continuous variables, respectively. In order to evaluate the respiratory parameters variations along time, a two-way repeated measure analysis of variance (ANOVA) was performed. The significance level was 0.05. The statistical package used for all analyses was the SPSS; version 11.0. Collected data was analyzed by SPSS with the help of a statistician.

Result

Table No. 1:HR

		Mean	Std. Deviation	Minimum	Maximum	P Value
	HR0	85.8100	13.06603	61.00	110.00	
	HR1	92.0600	18.32469	59.00	120.00	
	HR2	101.4124	14.84977	72.00	124.00	
	HR3	99.88	11.360	77	122	
	HR4	93.53	8.073	80	108	
	HR5	93.52	9.631	72	106	
PSV	HR6	94.00	7.385	84	99	
	HR7	87.00	5.345	82	92	
	HR8	90.50	3.742	87	94	
	HR9	90.50	1.604	89	92	
	HR10	94.00	0.000	94	94	.03511
	HR0	91.7700	13.83076	70.00	127.00	
	HR1	97.0000	14.52827	73.00	128.00	
	HR2	102.2209	14.70446	78.00	128.00	
	HR3	79.2700	42.31122	0.00	130.00	
	HR4	65.9600	49.01225	0.00	126.00	
Spont	HR5	97.55	19.397	72	129	
	HR6	86.10	7.965	75	93	
	HR7	86.00	7.483	80	94	
	HR8	0.0000	0.00000	0.00	0.00	
	HR9	0.0000	0.00000	0.00	0.00	
	HR10	0.0000	0.00000	0.00	0.00	

The chi-square statistic is 0.3923. The p-value is .03511. The result is significant at p < .05.

Table No. 2:MAP

		Mean	Std. Deviation	Minimum	Maximum	P Value
	MAP0	95.5700	9.73721	73.00	114.00	
	MAP1	102.2200	13.00783	77.00	127.00	
	MAP2	106.2900	12.30282	78.00	137.00	
	MAP3	107.13	13.601	71	135	
	MAP4	106.43	10.127	85	120	
	MAP5	103.93	10.110	82	116	
PSV	MAP6	99.00	13.538	81	111	
	MAP7	102.00	8.552	94	110	
	MAP8	93.00	1.069	92	94	
	MAP9	93.50	.535	93	94	
	MAP10	92.00	0.000	92	92	.041766
	MAP0	99.0099	12.02206	71.00	120.00	10.17.00
	MAP1	103.7228	12.55637	75.00	120.00	
	MAP2	104.5172	11.54250	82.00	119.00	
	MAP3	107.2222	12.57875	83.00	125.00	
	MAP4	107.1791	9.61836	86.00	123.00	
Spont	MAP5	111.42	6.603	102	124	
	MAP6	111.30	4.029	108	117	
	MAP7	112.57	10.690	104	124	
	MAP8					
	MAP9					
	MAP10					

The chi-square statistic is 4.0152. The p-value is .041766. The result is significant at p < .05.

Table No. 3:SPO

		Mean	Std.	Minimum	Maximum	P Value
			Deviation			
	SPO0	99.0800	.80000	97.00	100.00	
	SPO1	99.2200	.59595	97.00	100.00	
	SPO2	99.3000	.59459	98.00	100.00	
	SPO3	99.20	.563	98	100	
	SPO4	98.81	.680	98	100	
	SPO5	99.27	.691	98	100	
PSV	SPO6	98.67	.492	98	99	
	SPO7	99.00	0.000	99	99	
	SPO8	99.00	0.000	99	99	
	SPO9	99.50	.535	99	100	0.40202
	SPO10	100.00	0.000	100	100	.840292
	SPO0	98.9700	.74475	98.00	100.00	
	SPO1	98.9100	1.11096	94.00	100.00	
	SPO2	99.3023	.70410	97.00	100.00	
	SPO3	99.2625	.58987	98.00	100.00	
	SPO4	99.2727	.73475	98.00	100.00	
Spont	SPO5	99.08	.547	98	100	
	SPO6	99.30	.483	99	100	
	SPO7	99.43	.535	99	100	

The chi-square statistic is 0.0406. The *p*-value is .840292. The result is *not* significant at p < .05.

Table No. 4:ETCO

		Mean	Std. Deviation	Minimum	Maximum	P Value
	ETCO0	35.2400	2.98522	28.00	40.00	
	ETCO1	35.0500	3.12492	28.00	40.00	
	ETCO2	35.1800	3.44474	27.00	39.00	
	ETCO3	35.41	3.347	26	40	
	ETCO4	36.36	2.058	33	39	
	ETCO5	36.33	2.537	32	40	
PSV	ETCO6	35.00	3.075	31	38	
	ETCO7	39.00	0.000	39	39	.697806
	ETCO8	35.50	3.742	32	39	.037000
	ETCO9	34.00	4.276	30	38	
	ETCO0	33.7300	3.27789	28.00	40.00	

	ETCO1	35.0000	3.36050	29.00	40.00
	ETCO2	33.8837	4.35598	24.00	40.00
	ETCO3	34.1375	4.06200	20.00	40.00
Spont	ETCO4	34.1667	3.95196	28.00	40.00
	ETCO5	32.00	5.711	21	37
	ETCO6	35.20	3.615	30	38
	ETCO7	32.86	6.414	26	38

The chi-square statistic is 0.1508. The *p*-value is .697806. The result is *not* significant at p < .05.

Table No. 5:PAP

		Mean	Std. Deviation	Minimum	Maximum	P Value
	PAP0	20.4400	4.12756	12.00	29.00	
	PAP1	18.2000	4.57706	10.00	29.00	
	PAP2	15.8300	4.51049	8.00	26.00	
	PAP3	12.08	3.558	5	22	
	PAP4	11.62	4.286	8	24	
	PAP5	11.50	3.767	5	16	
PSV	PAP6	13.50	4.705	8	18	
	PAP7	16.00	2.138	14	18	
	PAP8	10.00	0.000	10	10	
	PAP9	9.00	1.069	8	10	
	PAP10	8.00	0.000	8	8	.000754
	PAP0	19.5200	4.09848	12.00	28.00	1000721
	PAP1	18.6000	6.79126	2.00	29.00	
	PAP2	17.9884	5.56775	8.00	29.00	
	PAP3	16.9250	4.92417	8.00	27.00	
	PAP4	13.9091	4.96054	7.00	24.00	
Spont	PAP5	12.95	6.055	3	21	
	PAP6	15.10	4.977	8	19	
	PAP7	15.86	6.414	9	21	
	PAP8					
	PAP9					
	PAP10					

The chi-square statistic is 11.3516. The p-value is .000754. The result is significant at p < .05.

Table No. 6:RR

		Mean	Std.	Minimum	Maximum	P Value
			Deviation			
	RR0	15.8900	3.98709	8.00	22.00	
	RR1	16.4900	3.72948	10.00	25.00	
	RR2	17.0100	4.32165	8.00	25.00	
	RR3	17.45	3.778	10	27	
	RR4	18.02	3.061	14	25	
	RR5	18.33	2.832	16	24	
PSV	RR6	19.33	1.775	17	21	
	RR7	20.00	0.000	20	20	
	RR8	15.00	3.207	12	18	
	RR9	15.00	0.000	15	15	.79525
	RR0	13.6900	3.31112	8.00	20.00	
	RR1	14.3200	3.76018	6.00	23.00	
	RR2	15.6744	5.76285	7.00	31.00	
	RR3	15.2375	4.18025	10.00	25.00	
	RR4	16.2879	3.84614	10.00	25.00	
Spont	RR5	17.05	4.527	12	26	
	RR6	15.90	6.280	12	25	
	RR7	10.00	0.000	10	10	

The chi-square statistic is 0.0673. The p-value is .79525. The result is not significant at p < .05.

Table No. 7:PLP

		Mean	Std. Deviation	Minimum	Maximum	P Value
	PLP0	8.9500	2.20365	6.00	15.00	
	PLP1	8.6800	2.83513	5.00	17.00	
	PLP2	7.6800	2.84225	2.00	16.00	
	PLP3	6.37	2.058	3	13	
	PLP4	6.02	1.751	4	10	
	PLP5	5.47	2.097	2	9	
PSV	PLP6	7.33	2.146	5	10	
	PLP7	6.00	1.069	5	7	
	PLP8	5.50	.535	5	6	.049765
	PLP9	3.00	1.069	2	4	
	PLP0	9.8100	3.58644	4.00	20.00	
	PLP1	8.3700	3.98141	1.00	17.00	

	PLP2	8.5581	3.88846	3.00	17.00
	PLP3	8.8500	4.48373	2.00	20.00
Spont	PLP4	5.9545	3.11044	2.00	15.00
	PLP5	5.05	2.471	2	10
	PLP6	4.00	.816	3	5
	PLP7	5.86	2.673	3	8

The chi-square statistic is 6.2787. The p-value is .049765. The result is not significant at p < .05.

Table No. 8:Scor

		Mean	Std. Deviation	Minimum	Maximum	P Value
	scor ext	5.9600	1.65706	2.00	8.00	
	scor1	7.3800	2.19632	2.00	10.00	
	scor2	8.1053	2.16382	2.00	10.00	
	scor3	7.74	1.534	6	10	
	scor4	9.00	1.017	8	10	
	scor5	9.07	1.033	8	10	
PSV	scor6	10.00	0.000	10	10	0.5.4.4
						.026443
	scor2	4.3200	2.64720	0.00	8.00	
	scor3	6.1200	2.42579	2.00	10.00	
	scor4	7.8261	2.29001	2.00	10.00	
	scor5	9.0182	1.67211	6.00	10.00	
	scor6	8.0000	1.85164	6.00	10.00	
Spont	scor7	8.67	1.000	8	10	
	scor8	10.00	0.000	10	10	

The chi-square statistic is 6.2196. The p-value is .026443. The result is significant at p < .05.

Discussion

Patients can interact with the ventilator and modify the breathing output to suit their unique and immediate demands through computer-driven or automated weaning. The PSV in MRV is determined by the ventilator's measurement of RR [14]. According to our study there was significant difference in control of HR, MAP, PAP, PLP which was better in PSV group, there was no significant difference in Spo2, ETCo2 and RR in two groups. There was significant difference in mean value of 10 point score between two groups. The automatic algorithm

selected pressure support levels greater than those of the staff determined by the RR/VT value (less than 80 L) in the manual group in order to maintain the goal RR at 15 bpm.

In a multi-center randomized experiment, Lellouche and colleagues demonstrated that, in contrast to a physician-controlled weaning procedure, a computer-driven weaning protocol for patients admitted to the intensive care unit (ICU) for longer than 24 hours decreased the length of stay in the ICU and the duration of mechanical breathing. In contrast to this study, a recently published randomized controlled trial by Rose and colleagues [15] revealed no benefit in employing automatic weaning in a patient sample that was mostly composed of surgical and trauma patients. Only post-operative patients were included in our procedure; these patients have less respiratory conditions and comorbidities, and hence are easier to wean and extubate from a mechanical ventilator.

The number of patients who experienced problems throughout the automatic weaning process is one factor to take into account. In the automatic mode, 15 patients experienced complications, compared to just four in the manual group. This difference is significant (p = 0.05). One patient refused to complete the trial, and three patients in the manual group experienced hemodynamic instability (such as septic shock, hemorrhagic shock, cardiogenic shock, or severe arrhythmias). Five patients in the automatic group experienced difficulties from hemodynamic instability, one patient declined to continue the trial, and nine patients experienced complications connected to the ventilator and the automatic weaning method. Six of the patients maintained a high level of pressure support, reaching the maximum pressure support of 25 cm H2O and remaining there. Three of the patients were conscious and breathing normally, but their pressure support did not drop as anticipated to lower values of five to seven for the extubation, despite the fact that it did not reach the maximum level.

In a great majority of instances, when patients are assessed to be ready for weaning, spontaneous breathing is encouraged to avoid the use of excessive sedation. Faster liberation from mechanical ventilation is likely to reduce the risk of ventilator associated pneumonia. The mechanical ventilator must match the patient's respiratory demands without interfering. This will ensure patient comfort and reduce the work of breathing [16].

Chao et al found that more than 10% of patients admitted to a weaning centre exhibited patientventilator asynchrony. 10 As a result; weaning was less successful and took longer time due to wasted diaphragmatic energy [17]. Successful ventilation requires optimisation of patient comfort, while at the same time providing adequate oxygenation and ventilation. Studies have shown that dyssynchrony is associated with a longer duration of mechanical ventilation.

Xirouchaki et al showed in their study that PAV+ is a safe and efficient ventilator mode that may support the majority of the critically ill patients meeting criteria for assisted ventilation[18]. They found that PAV+ increases the probability of remaining on assisted or unassisted spontaneous breathing, compared to PSV while it considerably reduces the incidence of patient–ventilator asynchronies. The limitation of this study was that all the patients included were placed on either of the group for a period of 48 hours.

Study limitations

Similar studies can be done on large number of patients to get better results. Further studies are needed comparing ASA 2 and ASA 3 patients.

Conclusion

The choice of ventilation strategies during GA is critical for optimizing patient outcomes and minimizing complications. Tailoring these strategies to individual patient characteristics - such as age, comorbidities, and type of surgery- ensures efficacy and safety. Large-scale RCTs should focus on diverse patient populations and incorporate advanced technologies to refine ventilation management.

Competing interests: The authors have no competing interests to declare in relation to this manuscript.

Funding: Nil

References

- 1. Marshall BE, Wyche MQ Jr: Hypoxemia during and after anesthesia. Anesthesiology 1972; 37:178–209
- 2. Pressure Support versus Spontaneous Ventilation during Anesthetic Emergence—Effect on Postoperative Atelectasis: A Randomized Controlled Trial
- 3. Heejoon Jeong, M.D., Pisitpitayasaree TanatpornPressure Support versus Spontaneous Ventilation during Anesthetic Emergence—Effect on Postoperative Atelectasis: A Randomized Controlled Trial
- 4. Brochard L (2002) When ventilator and patient's end of inspiration don't coincide; What's the matter? Am J Respir Crit Care Med 166:2–3
- 5. Jaber S, Capdevila X (2007) Pressure-support Ventilation in the Operating Room. Anesthesiology 107:671
- 6 . Brochard L, Harf A, Lorino H. Lemaire (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139:513–521.
- 7 . Cinnella G, Conti G, Lofaso F, Lorino H, Harf A, et al. (1996) Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation.
- 8. Heejoon Jeong, M.D., Pisitpitayasaree TanatpornPressure Support versus Spontaneous Ventilation during Anesthetic Emergence—Effect on Postoperative Atelectasis: A Randomized Controlled Trial

- 9. Hill AD, Fowler RA, Burns KE, Rose L, Pinto RL, Scales DC: Long-term outcomes and health care utilization after prolonged mechanical ventilation. Ann Am Thorac Soc. 2017, 14:355-62. 10.1513/AnnalsATS.201610-792OC
- 10. Suzuki S, Mihara Y, Hikasa Y, et al.: Current ventilator and oxygen management during general anesthesia: A multicenter, cross-sectional observational study. Anesthesiology. 2018, 129:67-76. 10.1097/ALN.000000000002181
- 11. Deng QW, Tan WC, Zhao BC, Wen SH, Shen JT, Xu M: Intraoperative ventilation strategies to prevent postoperative pulmonary complications: A network meta-analysis of randomised controlled trials. Br J Anaesth. 2020, 124:324-35. 10.1016/j.bja.2019.10.024
- 12. Buonanno P, Marra A, Iacovazzo C, et al.: Impact of ventilation strategies on pulmonary and cardiovascular complications in patients undergoing general anaesthesia for elective surgery: A systematic review and meta-analysis. Br J Anaesth. 2023, 131:1093-101. 10.1016/j.bja.2023.09.011
- 13. Tsumura H, Harris E, Brandon D, et al.: Review of the mechanisms of ventilator induced lung injury and the principles of intraoperative lung protective ventilation. AANA J. 2021, 89:227-33.
- 14. Pelosi P, Ball L, Barbas CS, et al.: Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care. 2021, 25:250. 10.1186/s13054-021-03686-3
- 15. Powers KA, Dhamoon AS: Physiology, Pulmonary Ventilation and Perfusion. StatPearls Publishing, Treasure Island (FL); 2024.
- 16. Hickey SM, Sankari A, Giwa AO: Mechanical Ventilation. StatPearls Publishing, Treasure Island (FL); 2024.
- 17. Gong Y, Sankari A: Noninvasive Ventilation. StatPearls Publishing, Treasure Island (FL); 2024.
- Brinkman JE, Toro F, Sharma S: Physiology, Respiratory Drive. StatPearls Publishing, Treasure Island (FL); 2024.
- 18. Miskovic A, Lumb AB: Postoperative pulmonary complications. Br J Anaesth. 2017, 118:317-34. 10.1093/bja/aex002