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Abstract: In this paper, a new solution approach to investigate an approximate optimal solution to fuzzy quadratic 

programming problem whose coefficients are taken to be generalized trapezoidal fuzzy numbers is developed. By using, a 

linear approximation of non-linear equations, the fuzzy quadratic objective function is transformed into linear objective 

function. An expected value technique is used for defuzzification and the obtained deterministic linear programming is solved 

by simplex method. The proposed strategy is validated by numerical examples and the obtained solutions are compared with 

existing methods solution. 
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1. INTRODUCTION 

Quadratic programming is a special kind of nonlinear programming which is increasingly used to solve many engineering 

problems in today’s environment. Its uses are widely found in planning and scheduling, emerging portfolio selection, 

accounting, agriculture and other fields. It is very challenging to know all instruction in many practical systems due to dubiety 

of many factors.  Fuzzy optimization and mathematical programming are powerful tools for solving more real world problems 

involving ambiguity and vagueness. A number of methods have been proposed to find the optimal solution for fuzzy quadratic 

programming problems. Seyedeh Maedeh [5] developed a solution technique to perceive an optimal solution for quadratic 

programming with triangular fuzzy numbers by means of SQP algorithm. Carlus cruz  and Ricardo Siva [1] established two 

phase technique to solve quadratic programming whose constraint coefficients are taken to be fuzzy numbers and alpha 

solutions were obtained through parametrical objective functions. A new solution approach for solving fuzzy QPP was 

addressed by Nemat Allah Taghi-Nezhad [4] using alpha cuts of fuzzy numbers. Shi D and Yin J [6] introduced an effective 

global optimization algorithm to solve quadratic programs with quadratic constraints In general, Wolfe [8] method in different 

modification is mostly used to solve fuzzy quadratic programming problems with the help of various softwares.  

In this research, we analyze and study about the quadratic programming problems whose cost and constraints coefficients are 

assumed to be generalized Trapezoidal fuzzy numbers. Taylor's series linear approximation is applied to reframe the quadratic 

objective function into linear objection function. The fuzzy linear programming is reformulated into its deterministic form 

using, expected value of trapezoidal fuzzy numbers. The obtained linear programming problem is solved by Simplex method. 
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2. PRELIMINARIES 

We review the basic results and definitions which are applied to this study. 

Definition 2.1 Fuzzy Number  

 A fuzzy set A
~

 defined on the real numbers   is said to be a fuzzy number if its membership function ]1,0[:~ R
A

 has the 

following characteristics: 

(i) )(
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is normal .i.e., there exists an Rx  such that 1)(
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xA . 

(iii) A
~
 is upper semi continuous. 

(iv) Supp )
~

(A is bounded in R . 

Definition 2.2 Trapezoidal Fuzzy Number  

A generalized trapezoidal fuzzy number A
~

 can be represented by  ivaaaaA ''''''
~

 where 
ivaaaa  ''''''  and its 

membership function is defined by 
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Definition 2.3 Arithmetic operations of Trapezoidal Fuzzy Numbers  

Let  ivaaaaA ''''''
~

 and  ivbbbbB ''''''
~

 be any two trapezoidal fuzzy numbers such that 
ivaaaa  ''''''  

and 
ivbbbb  ''''''  Then  

(i) 
iviv babababaBA  ''''''''''''

~~
 

(ii) ''''''''''''
~~

babababaBA iviv   
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Definition 2.3  - level set of  Trapezoidal Fuzzy Number  

Let  ivaaaaA ''''''
~

 be a trapezoidal fuzzy number then its alpha level set is defined by  

 )'''(),'''('
~

,
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Definition 2.4 Expected value of  Trapezoidal Fuzzy Number[3]  

Let A
~

 be a trapezoidal fuzzy number with alpha level set 

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
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Definition 2.5 Properties on Expected value of fuzzy numbers Let A
~

and B
~

  be any two fuzzy numbers and   is any real 

number then 
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Definition 2.6 Taylor’s theorem for linearization of nonlinear function 

Let ),...,,(
~

321 nxxxxf be a nonlinear function which has the continuous first order partial derivatives then, the linear 
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3 FUZZY QUADRATIC PROBLEMS 

3.1 Mathematical Formulation of Fuzzy Quadratic Programming Problem  

 The general fuzzy quadratic programming problem with linear constraints is formulated by 

Maximize ji

m

i

n

j

ij

n

j

jj xxqxcZ ~~~

2

1~~~

1 11


 

      (1) 

subject to the constraints 

ij

m

i

ij bxa
~~~
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

     (2) 

njmix j ,...2,1;,....2,1;0~    (3) 

where jc~ , ijq~ , ija~ , ib
~

 are fuzzy numbers. 

3.2 Formulation of Proposed Fuzzy Quadratic Programming Problem 

In this study, we can assume the cost coefficients, constraint coefficients and right hand of the constraints of quadratic 

programming problem to be trapezoidal fuzzy numbers, which can be formulated as follows: 

Maximize 
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v

jjjjj

m

i

v

jijijiji bbbbxaaaa '''''''~'''''''
1




 (5) 

njmix j ,...2,1;,....2,1;0~       (6) 

Definition 3.3 

A feasible fuzzy solution 
0~x  is called fuzzy optimal solution for (4)-(6) if for all njmi ,...2,1;,...2,1  , 
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for                     feasible fuzzy solutions. 

 

4 PROPOSED SOLUTION PROCEDURE 

4.1 The proposed procedure is to obtain the expected approximate solution for quadratic programming (4)-(6) is given as 

follows: 

Step 1: Take the quadratic programming problem as in (4)-(6). Select the arbitrary initial point  

  iviv
yyyyxxxxyx 0000000000 '''''','''''')~,~(  . 

where 00
~,~ yx  are trapezoidal fuzzy numbers. 

Step 2: Compute 
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and using definition [2.6], by neglecting higher degree terms the fuzzy linear objective 

function corresponding to (4) takes the form 
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 Step 3: The reformulated fuzzy linear programming problem subject to the constraints (5)-(6) is  
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
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Step 4: Convert the fuzzy linear programming problem into its deterministic form by taking expected value of trapezoidal 

fuzzy numbers such that, 

Maximize   
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                 (11) 
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(12) 

 Step 5: Using definition (2.5) the problem (10)-(12) is reformulated as follows: 

Maximize    



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1
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subject to the constraints 
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njmix j ,...2,1;,....2,1;0~             (15) 

Step 6: Using definition (2.4) the reduced deterministic model of (13)-(15) is formulated by 

Maximize j

n

j

j xZ 


 
1

     (16) 

Subject to the constraints 

ij

n

ij x  
11

            (17) 

njmix j ,...2,1;,....2,1;0~ 
  

  (18) 

Step 7: Solve the obtained linear programming problem (16)-(18) using Simplex procedure [ ] and find an expected 

approximate optimal solution. 

4.2 Lemma: The Solution of problem (7)-(9) and problem (16)-(18) are equivalent. 

 Proof: Let S1 and S2 be the feasible solutions of the problems (7)-(9) and (16)-(18) respectively. 
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  x  S2 

Therefore S1=S2 and so the optimal solutions are equivalent. 

5.1 NUMERICAL EXAMPLE 

Let the fuzzy quadratic problem be 

 

Maximize

2

1

21

~8.0,7.0,6.0,5.0

~9.0,8.0,6.0,4.0~6.1,5.1,4.1,2.1
~

x

xxZ





      

(19) 

 

subject to the constraints 

 

 

2.6,8.5,6.5,4.5

~2.3,8.2,6.2,4.2~4.2,2.2,8.1,6.1 21



 xx

 

(20) 

4.4,2.4,8.3,6.3

~4.1,2.1,9.0,8.0~9.2,7.2,5.2,3.2 21



 xx

 

(21) 

0~,~
21 xx

 

(22) 

Step 1: Consider the FQPP (19)-(22).  

Choose an arbitrary initial point  1.1,9.0,8.0,7.0,4.0,3.0,2.0,1.0P
 

Step 2: Using definition [2.3] and definition [2.6]  
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we have
 

9.0,8.0,6.0,4.0~
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The quadratic objective function can be reformed into the following linear function as follows. 

Maximize 21
~9.0,8.0,6.0,4.0~5.1,3.1,0.1,6.0'

~
xxZ 

 

Step 3: The fuzzy linear programming can be formulated by 

21
~9.0,8.0,6.0,4.0~5.1,3.1,0.1,6.0

8.3,2.2,6.1,0.1'
~

 Maximize

xx

Z





 

(23) 

subject to the constraints 

 

 

2.6,8.5,6.5,4.5

~2.3,8.2,6.2,4.2~4.2,2.2,8.1,6.1 21



 xx

 

(24) 

4.4,2.4,8.3,6.3

~4.1,2.1,9.0,8.0~9.2,7.2,5.2,3.2 21



 xx

 

(25) 

0~,~
21 xx

 

(26) 

Step 4: Using definitions (2.4) and (2.5) the FLPP  

(23)-(26) reformulated into its deterministic form is as follows: 

Maximize 21
~7.0~1.1 xxZ 

                (27) 

subject to 

7.5~7.2~0.2 21  xx      (28) 
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4~1.1~6.2 21  xx                  (29) 

0~,~
21 xx       (30) 

Step 5: The crisp linear programming problem (27)-(30) can be solved by Simplex procedure; we obtained the solution as 

given in following table. 

 

Step 6: The expected approximate optimal solution of (19)-(22) is  

4.1~;9.0~
21  xx  

Maximize 1.2Z  

5.2 COMPARATIVE SOLUTION OF PROPOSED METHOD WITH EXISTING METHODS 

The problem solved under methods existing in literature provides optimal solutions which is compared and given in  

following table. 

 

Existing 

Literatures 

Numerical example 5.1 

1
~x

 2
~x

 Max Z
~

 

Swarup’s [7]  7.0~
1 x

 
7.0~

2 x
 4.2

~
Z

 
Kiritiwant 

and et. al [2] 
6.0~

1 x
 

6.0~
2 x

 01.2
~
Z

 

Lalitha [3] 3.1~
1 x

 
3.1~

2 x
 19.2

~
Z

 
Proposed 

method 
9.0~

1 x
 

4.1~
2 x

 1.2
~
Z

 

 

 

 

0 5.7 2
* 2.7 1 0 2.9

0 4 2.6 1.1 0 1 1.5

0 -1.1 -0.7 0 0

0 2.7 0 1.9 1 -0.8 1.4

1.1 1.5 1 0.4 0 0.4 3.8

1.7 0 -0.3 0 0.4

0.7 1.4 0 1 0.5 0.1

0.2 0.9 1 0 -0.2 0.4

2.1 0 0 0.2 0.4

BC BY BX 1x 2x
3x 4x b

3x

4x

jC 
jZ

3x

1x

jC 
jZ

2x

1x

jC 
jZ
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6. CONCLUSION 

In this paper, we developed a novel solution strategy to find an approximate optimal solution for quadratic programming 

problem whose coefficients are characterized by Trapezoidal fuzzy numbers, without using Kuhn Tucker constraints. The 

proposed technique provides the solution in less number of iterations and avoid involving copious constraints, compare to other 

existing methods. The solution we get through this method is 80% accuracy to deterministic optimal solution. We hope that 

this method will give a favorable solution to fuzzy quadratic programming problem quite simple. 
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