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Abstract

With the overall increase in the elderly population comes additional, necessary medical needs and
costs. Medicare is a U.S. healthcare program that provides insurance, primarily to individuals 65 years
or older, to offload some of the financial burden associated with medical care. Even so, healthcare
costs are high and continue to increase. Fraud is a major contributor to these inflating healthcare
expenses. Our paper provides a comprehensive study leveraging machine learning methods to detect
fraudulent Medicare providers. We use publicly available Medicare data and provider exclusions for
fraud labels to build and assess three different learners. In order to lessen the impact of class
imbalance, given so few actual fraud labels, we employ random under sampling creating four class
distributions. Our results show that the C4.5 decision tree and logistic regression learners have the
best fraud detection performance, particularly for the 80:20 class distribution with average AUC
scores of 0.883 and 0.882, respectively, and low false negative rates. We successfully demonstrate the
efficacy of employing machine learning with random under sampling to detect Medicare fraud.
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1. Introduction

The viability of most healthcare systems revolves around competent and capable medical providers
and a solid financial infrastructure. Both aspects can be irrevocably damaged by fraud, waste, and
abuse. The financial backbone, in particular, is subject to fraudulent activities incurring potentially
large losses. Healthcare programs, in the United States (U.S.), have experienced tremendous growth
in patient populations and commensurate costs. The elderly community continues to grow with a 28%
increase in 2014 versus a rate of just 6.5% for individuals under 65 years of age (U.S. Administration
for Community Living 2015). Moreover, in 2015, spending on healthcare-related activities reached
$3.2 trillion, which is about 17% of the total U.S. budget (Backman 2017). Medicare is one such U.S.
healthcare program created to assist the elderly and other individuals with certain medical conditions
(Medicare 2017). Medicare alone accounts for about 15% in spending (net of $588 billion), per year
of the total healthcare budget and is expected to increase to 18% within the next decade (Backman
2017). Given the increase in the elderly population, with their need for increased healthcare and
financial assistance, programs like Medicare are critical and, as such, must reduce program expenses
and costs to allow for accessible healthcare. One way to accomplish this is to lessen the impact of
fraud. The impact of healthcare fraud is estimated to be between 3% to 10% of the nation’s total
healthcare spending continuing to adversely impact the Medicare program and its beneficiaries
(NHCAA 2017). There are programs, such as the Medicare Fraud Strike Force (OIG 2017), enacted to
help combat fraud, but continued efforts are needed to better mitigate the effects of fraud.

More information on healthcare fraud, to include different types of fraud, can be found in (Joudaki et
al. 2015; Bauder, Khoshgoftaar, and Seliya 2017). In this paper, we propose a machine learning
approach for Medicare fraud detection using publicly available claims data and labels for known
fraudulent medical providers, across all medical specialties or provider types (e.g. dermatology or
cardiology). We do not build a distinct model per specialty, but rather one model to predict a
fraudulent provider regardless of specialty. Specifically, we use the Medicare Provider Utilization and
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Payment Data: Physician and Other Supplier, available from the Centers for Medicaid and Medicare
Services (CMS), which provides information, by physicians and other healthcare providers, on
services and procedures provided to Medicare beneficiaries (CMS 2017). The Medicare data does not
contain labels indicating fraudulent providers or procedures. In order to build models, or learners, to
detect fraudulent providers, we use the information found in the List of Excluded Individuals and
Entities (LEIE) database (LEIE 2017). This database contains a list of individuals and entities who are
excluded from participating in federally funded healthcare programs due to fraud. We detail a process
for merging the Medicare data and the LEIE labels that accounts for differing lengths of exclusions,
matching providers by unique identification numbers. The final dataset has significantly more non-
fraud versus fraud labels, thus is a considered highly imbalanced. In order to mitigate the adverse
effects of class imbalance on detecting fraud, we employ random undersampling (RUS) which retains
all fraud labels while randomly reducing the number of non-fraud labels. Because the Medicare data
is big data, with over 37 million instances, using oversampling methods would further increase the
dataset size making many machine learning approaches impractical. We create and test four different
class distributions, or ratios, to assess the best mixture of majority (non-fraud) and minority (fraud)
class labels. For each distribution, we build and assess three different learners (C4.5 decision tree,
logistic regression, and support vector machine) using 5-fold crossvalidation, repeated 10 times to
reduce bias caused by bad draws during sampling. In order to fairly assess fraud detection
performance, we use several measures which include the Area Under the ROC (Receiver Operating
Characteristic) Curve (AUC), false positive rate (FPR), and false negative rate (FNR). Our results
indicate that the C4.5 decision tree and logistic regression learners have the best overall AUC
performance, particularly for the 80:20 and 75:25 (majority:minority) class distributions. To the best
of our knowledge, no other work provides a study that directly incorporates the entire Medicare
dataset plus LEIE exclusion labels to detect fraudulent providers for any specialty, using differing
RUS class distributions on a diverse set of learners.

The remainder of the paper is organized as follows. The Related Works section discusses works
related to the current research. In the Methodology section, we discuss our research methodology
detailing the Medicare and LEIE data, learners, performance metrics, class imbalance, and
experimental design. The results of our research are examined in the Results and Discussion section.
Finally, the Conclusion section summarizes our conclusions and plans for future work.

2. Related Works

With the limited number of easily accessible, documented Medicare fraud cases and the relatively
recent availability of data, a lot of the existing Medicare fraud detection research uses unsupervised
machine learning via anomaly detection methods. A recent study by Sadiq et al. (Sadiq et al. 2017)
employs the Patient Rule Induction Method (PRIM) based bump hunting (unsupervised) method to
identify anomalies in the 2014 Florida Medicare data. Studies, such as those by our research group,
employ unsupervised methods to detect anomalies in Medicare payments leveraging regression
techniques and Bayesian modeling (Bauder and Khoshgoftaar 2017; 2016). In our work, we employ
supervised Medicare detection methods using publicly available excluded, or fraudulent, provider
information, which is the focus on the remainder of the related works.

In a preliminary study, Chandola et al. (Chandola, Sukumar, and Schryver 2013) use Medicare claims
data and provider enrollment data from private sources to detect healthcare fraud. The authors employ
several different techniques including social network analysis, text mining, and temporal analysis.
Using features derived from the temporal analysis, the authors build a logistic regression model to
detect known fraudulent cases using labeled data from the Texas Office of Inspector General’s
exclusion database only. Moreover, details are limited with regards to data processing and mapping
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fraud labels to the Medicare data. It is important to note that none of these studies deal with the
problem of class imbalance. Our research group presents an exploratory study, using 2013 Florida
Medicare data, that looks to predict fraudulent providers by using only the number of procedures
performed via a Multinomial Naive Bayes model (Bauder et al. 2016).

If the predicted provider type does not match what is expected, then this provider is performing
outside of normal practice patterns and should be investigated. There are only two related works
found that address class imbalance in the detection of Medicare fraud, using the LEIE database. In a
study by Herland et al. (Herland, Bauder, and Khoshgoftaar 2017), the authors validate and improve
upon their previous model which detects possibly fraudulent behavior by predicting a provider’s
specialty based on the number of procedures performed. They use 2013 Medicare data (Florida only)
and the LEIE database for fraud labels. The authors propose three strategies to improve their previous
model that include the following: feature selection and sampling, removal of low scoring specialties,
and grouping similar specialties. Class imbalance was mitigated using both random undersampling
and Synthetic Minority Over-sampling Technique (SMOTE) for 82 specialties. Branting et al.
(Branting et al. 2016) create a graph of providers, prescriptions, and procedures. The authors use two
algorithms where one calculates the similarity to known fraud and non-fraud providers, and the other
estimates fraud risk via shared practice locations.

Medicare data from 2012 to 2014 was used with 12,153 excluded providers from the LEIE database.
To address class imbalance, the authors only used a 50:50 class distribution. A J48 decision tree was
built using 11 graph-based features and 10-fold cross-validation but no repeats. In relation to the last
two very preliminary studies, which also use Medicare data with LEIE fraud labels, our research is
more comprehensive in the breadth and depth of experimentation and results. We provide a
comprehensive discussion of the data and the mapping of the fraud labels. We employ three different
learners on four different class distributions to assess the effects of class imbalance. Moreover, our
experimental design is robust using 5-fold cross-validation with 10 repeats per learner and class
distribution combinations. Finally, we present results using several different metrics and discuss
statistical significance of the results.

3. Methodology

In this section, we detail the Medicare data, LEIE database, and the mapping of fraud labels.
Additionally, we discuss the three learners, performance metrics, and class imbalance. Finally, we
briefly outline our experimental design.

Data: The data in our experiment is from the Centers for Medicare and Medicaid Services (CMS)
which encompass the 2012 to 2015 calendar years. The Medicare Provider Utilization and Payment
Data: Physician and Other Supplier describes payment and utilization claims data, with information
on services and procedures provided to Medicare beneficiaries. The data was compiled and
aggregated by CMS, grouping claims information by unique National Provider Identification (NPI)
numbers, Healthcare Common Procedure Coding System (HCPCS) code, and place of service (e.g.
office or hospital). The Medicare dataset contains values that are recorded after claims payments were
made and with that, we assume that the Medicare dataset was appropriately recorded and cleansed by
CMS (CMS Office of Enterprise Data and Analytics 2017). The combined Medicare dataset has
37,147,213 instances and 30 features, covering 89 specialties, and 1,080,115 distinct providers. We
focus on detecting fraud using the features in Table 1.

Note that three features are categorical, with the remainder being numerical. The feature exclusion is
the class variable that contains the fraud or non-fraud labels. NPI is not used in the model but retained
for identification purposes. It is important to point out that because we merged all four years of
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Medicare data, the standardized payment variables are not included since these only appear in the
2014 and 2015 Medicare years. Similarly, the standard deviation variables were also excluded,
because they pertain to 2012 and 2013 only. The possible use of the remaining variables, applying
additional feature engineering, is left as future work.

Table 1: Description of Medicare features

Feature Desscription

npi Unigue provider identification
number

provider_type Medical provider’s specialty
l::'l:.'.ll"ll:;'IJ."rt'Ll'lr:I

nppes_provider_gender Gender (categorical)

hepes_code Procedure or service performed
by the provider {categorical)

line_srve_cnt Mumber of proveduresfservices
the
provider performed

bene _unique_cnt Number of distinct Medicare

beneficiaries

receving the service
bene_day_srve_cal Number of disunct Medicare

beneficiary / per

day services performed
average_submitied_chrg_ami Average of the charges that the

provider

submitted for the service
average_tnedicare_payment_aml Average paymen! made o a

provider per claim

for the service performed
exclusion Fraud labels from the LEIE

database

In order to obtain labels indicating fraudulent providers, we incorporate excluded providers from the
List of Excluded Individuals/Entities (LEIE) database (LEIE 2017). The LEIE only includes NPI-
level, or provider-level, exclusions, with no details on procedures (HCPCS codes) that contribute to
the fraud. The exclusions are categorized by various rule numbers, which indicate severity as well as
the length of time of each exclusion. We selected the providers excluded for more severe reasons, that
are classified as mandatory exclusions by the Office of Inspector General (LEIE 2017), as seen in
Table 2. The 1128(a) rules have five-year minimum periods, whereas rule 1128(c)(3)(g)(i) has a 10
year minimum period, and rule 1128(c)(3)(g)(ii) is permanent exclusion. More specifically, we label
providers as excluded during the exclusion period only for the currently available Medicare years.
These activities during the exclusion period can indicate a submission of claims for services by an
excluded provider which are considered fraud under the federal False Claims Act (United States Code
2006). Even though the LEIE is limited in nature and does not contain National Provider
Identification (NPI) number for most of the providers (Pande and Maas 2013), we decided to match
on NPI only to accurately capture the known fraudulent exclusions. Moreover, due to the lack of
detail in the LEIE database, we assume the excluded providers (NPI) include all of the corresponding
procedures (HCPCS) performed for the exclusion period. Based on this assumption, all procedures
performed by an excluded provider are considered fraudulent. Presently, there is no known publicly
available dataset which includes fraud labels by provider and by each procedure performed, but future
research will look at ways to mitigate this lack of data through majority voting or methods of NPI-
level data aggregation.
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Table 2: LEIE exclusion rules

Rule Number Drescription

L128(a)( 1) Conviction of program-related crimes.

L 128{a)(2) Conviction relating to patient abuse or neglect.

L 128{a)(3) Felony conviction relating o health care fraud.
1128({b)i4) License revocalion or Suspension.

LI28(e){3pzhi) Conviction of two mandatory exclusion offenses.
L128{e){3pgifi) Conviction on 3 or more mandatory exclusion offenses.

In combining the 2012 to 2015 Medicare datasets, we matched features and excluded those that did
not match in all four years. For instance, in 2012 the standard deviations for charges and payments are
available but discontinued for the later years. To provide fraud labels for the combined Medicare
dataset, we cross-referenced NPI numbers in the Medicare data and LEIE database, to match any
providers with past or current exclusions. In the LEIE database used for our study, only the 1128(a)
rules were used which indicate a 5-year exclusion period. Note that only the year is available in the
Medicare data not day or month, so we assumed that if a provider was excluded anywhere in a given
year, all of those instances would get fraud labels. In order to map the LEIE fraud labels to the
Medicare data, we first exclude providers who have been reinstated or have received waivers. Then,
both start and end dates need to be set based on the maximum period of exclusion. In our case, five
years was the maximum period, so we start five years prior to the first year of the Medicare dataset.
This indicates that a provider could have been put on the exclusion list in 2008 and still be on the list
in 2012 (which is the first year of the Medicare data), thus be labeled as fraudulent for 2012.
Similarly, we do the reverse process from the last year of the Medicare dataset and label providers
accordingly. We take the disjunction of these start and end labels to get the list of excluded instances
to be labeled as fraud. For examples, if a provider is placed on the exclusion list in 2009, then their
claims are marked as fraudulent for 2012 and 2013, but not 2014 and 2015. Finally, we match this
with the Medicare NPI numbers to generate the mapped fraud and non-fraud labels. These steps to
map fraud labels help to mitigate over counting fraudulent providers due to overlapping or expired
exclusion periods, thus we can be reasonably confident, with the stated assumptions, that we capture a
fair number of fraud labels for the corresponding excluded providers. The final Medicare dataset, used
in our experiments, has 3,331 instances labeled as fraudulent due to flagged providers with the
remaining 37,143,882 instances being labeled as not fraudulent.

Learners: For our experiments, we built and test three different learners to classify fraudulent
Medicare provider claims: C4.5 decision tree (C4.5), Support Vector Machine (SVM), and Logistic
Regression (LR). We chose these learners due to their popularity and relatively good performance in
different classification-related domains. Each of these learners was built and tested using the Weka
machine learning software (Witten et al. 2016). The default parameters are used and changes were
made to these configurations when experimentation indicated increased performance based on
preliminary analysis. The decision tree, C4.5, was trained using the J48 algorithm in Weka and
configured with Laplace smoothing and no pruning as these have been shown to improve performance
(Weiss and Provost 2003). Logistic Regression (LR) is a classification algorithm similar to linear
regression except a different hypothesis class is used to predict the probability of class membership
(Le Cessie and Van Houwelingen 1992). SVM in Weka incorporates sequential minimal optimization
(SMO) for training the SVM models. We set the complexity parameter ‘c’ to 5.0 and the
‘buildLogisticModels’ parameter to true.
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Performance Metrics: The classification models are evaluated using the AUC performance metric
(Bekkar, Djemaa, and Alitouche 2013). AUC is a popular measure of model performance, providing a
general idea of predictive potential of a binary classifier, and was chosen as the performance measure
for our experiment because of the severe class imbalance of our testing data (Jeni, Cohn, and De La
Torre 2013). The ROC curve is used to characterize the trade-off between true positive rate and false
positive rate and depicts a learner’s performance across all decision thresholds, i.e. a value between 0
and 1 that theoretically separate the classes. AUC is a single value that ranges from O to 1, where a
perfect classifier provides an AUC value of 1. In order to gather more detail on learner performance,
we also examine false positive rate (FPR) and false negative rate (FNR), with the instances labeled as
fraud being the positive class. A classification threshold of 0.5 was used to assess these metrics for
each learner. For the detection of Medicare claims fraud, a low FNR is most important since this
indicates a higher detection rate for capturing actual fraudulent claims. Given the current manually
intensive process in detecting fraud, we can generally accept a slightly higher FPR (i.e. claims
predicted as fraud that are not actual fraud) as long as we obtain the lowest possible FNR. In practice,
missing a substantial number of fraudulent events will render any fraud detection system ineffective,
but, conversely, having too many false positives will make the system unusable. For our research, a
learner with a low false negative rate and a reasonably low false positive rate is desired.

Class Imbalance: The Medicare claims data, with fraud labels, is a challenging dataset due to the
skewed nature of the provider exclusions. With such class imbalance (Haixiang et al. 2017), the
learner will tend to focus on the majority class (i.e. the class with the majority of instances), which is
usually not the class of interest. In our case, the non-fraud labels are the majority class. An effective
way to compensate for some of the detrimental effects of severe class imbalance is by changing the
class distribution in the training data, to increase the representation of the minority class to help
improve model performance. The sampling of data changes the class distribution of the training
instances to minimize the effects of these rare events. Van Hulse et al. (Van Hulse, Khoshgoftaar, and
Napolitano 2007) provide a comprehensive survey on data sampling techniques and their impact on
various classification algorithms. There are two basic sampling methods: oversampling and
undersampling. Oversampling is a method for balancing classes by adding instances to the minority
class, whereas undersampling removes samples from the majority class. Oversampling can increase
processing time by increasing the overall size. More critically, oversampling can overfit the data by
making identical copies of the minority class. On the contrary, with undersampling, we retain all of
the original fraud-labeled instances and randomly sample without replacement from the remaining
majority class instances. In our study, we use random undersampling (RUS) with the following class
distributions (majority:minority): 50:50, 65:35, 75:25, and 80:20. The selected class ratios retain a
reasonable amount of the majority class and reduce loss of information relative to the minority (fraud
labeled) class. In our experiment, we repeat the RUS process 10 times for each of the class
distributions.

Experimental Design: We employ stratified 5-fold cross-validation to assess the performance of each
of the learners (Witten et al. 2016). The reason we use 5-fold cross-validation is because of the
extremely low percentage of fraud labels throughout the entire Medicare dataset. This reduces the
likelihood that a fold has too few positive class instances and retains more equitable labeled data for
fair evaluation. Moreover, to further reduce bias due to bad random draws and to better represent the
claims data, we repeat the 5-fold cross-validation process 10 times and average the scores to get the
final performance results.
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4.Results and Discussion

In general, the results of our study do not necessarily point to one specific learner as the best overall
performer across class distributions and performance metrics. Even so, C4.5 and LR both perform
well, based on average AUC, across all class distributions, with C4.5 having the highest absolute
AUC score. Table 3 details the performance results for all class distributions and learners, across all
the performance metrics. From this, we can see that C4.5 and LR are indeed the best performing
learners, with the general trend indicating worse performance as the minority class percentage
increases. SVM has a deviation from this general trend with the lowest AUC at the 65:35 class
distribution. At this point, based on AUC only, the best learner is C4.5 with an 80:20 class
distribution.

Table 3: Performance results by class distribution

Class Distribution 80:20

Learner C4.5 LR SVM  Avg

AUC 0.883 0.382 03862 0876

FNR 0.275 0483 03583 0447

FPR 0.159 0075 0.056 0.097
75:25

AUC 0.882 0.880 03861 0874

FNR 0.226 0411 0416 0.351

FPR 0.191 0099 0.102 0.131
65:35

AUC 0.876 0876 0856 0.869

FNR 0.167 0285 029 0.250

FPR 0250 0154 0.162 0.189
50:50

AUC 0.868 0.865 0.857 0.863

FNR 0.100 0.152 0.197 0.149

FPR 0343 0256 0235 0278

As discussed, additional metrics, including FPR and FNR, are used to further assess learner
performance across class distributions. It is important to use other measures of learner performance to
help gauge actual detection capabilities, particularly when the correct detection of real fraud cases is
more important than detecting non-fraud ones. From Table 3, we again note that C4.5 has the highest
AUC for each class distribution, with LR being very close to C4.5 in average AUC. Because we wish
to catch as many actual fraudulent providers as possible, we require a learner with a low FNR to
correctly identify positive class instances. However, there is a tradeoff between the number of actual
fraud instances detected and false positives. As stated, the detection of actual fraudulent providers is
the primary purpose of any fraud detection approach, thus using the learner with a low FNR is critical,
even at the cost of injecting additionalfalse positives. The C4.5 decision tree learner has the lowest
FNR for every class distribution, but also the highest FPR. The lowest FPR scores alternate between
LR and SVM, depending on the class distribution. Even though LR and C4.5 have similar AUC
scores, LR has higher false negative rates. Given our need for the accurate detection of actual fraud,
the C4.5 learner is the best choice with the highest AUC and the lowest rate of false negatives. In
order to provide additional rigor around our results and recommendations, we evaluated the statistical
significance of our AUC results with a two-factor ANalysis Of VAriance (ANOVA) and Tukey’s
Honest Significant Difference (HSD) tests, at a 95% confidence level (Sargin and others 2009).
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Table 4 shows that both the class distribution and learner factors are significant. To further elucidate
the specifics per factor, we performed a Tukey’s HSD test outlined in Figure 5.

Table 5a, in the Tukey’s HSD results table, confirms that C4.5 and LR are significantly better than
SVM. Table 5b shows that the only significant difference is seen in the 65:35 and 50:50 class
distributions. These results, as noted, are for AUC and do not directly reflect the FNR or FPR of each
learner but do highlight the need to understand the domain and investigate other metrics to assess
overall model performance and fraud detection capabilities.

Table 4: ANOVA results

Df  Sum5g Mean5q Fvalue Pr(>F)

Distribution 3 0.003 0.001 94 36 =2e-16
Learner 2 0.008 0.004 41542 <2e-16
Residuals 114 0.001 0.001

Table 5: Tukey’s HSD results

Groups Ratio AUC

Groups Learner AUC , 20:20 0.876
a C4.5 0.877 a 75:25 0.874
a LR 0.876 b 65:35 0.86Y9
b SVM ().859 C 50:50  0.863
{a) Learners i(b) Class Distributions

5. Conclusion

Medicare fraud is a major contributor to high overall healthcare expenses and costs, particularly for
the growing elderly population. The reduction of fraud and the recovery of costs is of utmost
importance to maintain proper health and well-being. In our study, we present an effective approach
to detect Medicare fraud leveraging the LEIE database for provider fraud labels. Additionally, the
merging of the Medicare data with LEIE fraud labels is outlined which reduces the potential for over
representation of fraud labels. The use of random undersampling is highlighted in exhibiting good
fraud detection capabilities with different learners. Our research demonstrates the efficacy of using
known fraud labels coupled with RUS to detect fraudulent Medicare providers. Since our focus is on
detecting actual fraudulent providers, we require a model with a high AUC and low false negative
rate. We demonstrate that C4.5 is the best overall learner with the 80:20 class distribution, with an
AUC of 0.883, and the lowest false negative rates. In our study, we show that using RUS with big
data can successfully detect fraudulent Medicare providers. Continued research includes acquiring
additional LEIE fraud labels using other methods, such as fuzzy string matching, and other data
sources. Additionally, performing experiments by specialty to simulate real-word fraud detection
performance will be pursued. Finally, we intend to account for NPI-level LEIE exclusions, rather than
assumed NPI and procedure-level exclusions, in assessing fraud using the Medicare data
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