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ABSTRACT

Background: Myocardial infarction remains one the leading causes of mortality and morbidity and involves a high cost 
of care. Early prediction can be helpful in preventing the development of myocardial infarction with appropriate diagnosis 
and treatment. Artificial neural networks have opened new horizons in learning about the natural history of diseases and 
predicting cardiac disease. Methods: A total of 935 cardiac patients with chest pain and nondiagnostic electrocardiogram 
(ECG) were enrolled and followed for 2 weeks in two groups based on the appearance of myocardial infarction. Two types 
of data were used for all patients: nominal (clinical data) and quantitative (ECG findings). Two different artificial neural 
networks – radial basis function (RBF) and multi-layer perceptron (MLP) – were used to classify the two groups. Results: 
The RBF neural network had an accuracy of 83% with ECG findings and an accuracy of 78% with clinical features. When 
and clinical data were used in an MLP neural network trained with a genetic algorithm, ECG results led to a classification 
accuracy of 96% and clinical data yielded an accuracy of 84.5%. Conclusion: Both neural network structures predicted 
MI within about 2 weeks of hospital referral with an acceptable degree of accuracy in patients with nondiagnostic ECG. 
The MLP neural network significantly outperformed the RBF network because of the use of the genetic algorithm, which 
provided a global strategy to accurately determine MLP weights (clinical trials registry: NCT01870258).
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INTRODUCTION

Atherosclerosis is one of the leading causes of death in 
the world. Moreover, it is the main cause of coronary 
artery disease (CAD), a progressive disease that causes 
atherosclerotic changes in the coronary artery walls and 
usually appears in mid- to late adulthood.1

Acute myocardial infarction, involving irreversible necrosis 
of heart muscle secondary to prolonged ischemia, is the 

most deadly presentation of CAD. Infarction usually 
arises from an imbalance between oxygen supply and 
demand, which is most often caused by plaque rupture 
and thrombus formation in a coronary vessel, leading to 
an acute reduction in the blood supply to a portion of the 
myocardium.2 Myocardial infarction may lead to systolic or 
diastolic dysfunction and may increase the predisposition 
to arrhythmias and other complications such as ischemic, 
mechanical, embolic and inflammatory disturbances.3 
Because of the high cost of care, effective drugs and 
treatments, the prevention of myocardial infarction is a 
desirable goal. To predict the likelihood of myocardial 
infarction many factors have been used, such as laboratory 
data, history and physical examination findings; some of 
the results have been hopeful but none of these studies 
were successful in accurately predicting the likelihood of 

Original  Ar t ic le



Kojuri, et al.: MI prediction using artificial neural network

52 	 Journal of Cardiovascular Disease Research  Vol 6  ●  Issue 2  ●  Apr-Jun  2015

myocardial infarction.4,5

Artificial neural networks (ANN) have been widely used in 
various fields such as function approximation, prediction, 
modeling and classification, and they have the potential 
to open new prospects in managing cardiac problems 
such as disease prediction, diagnosis and classification of 
diseases with similar signs and symptoms.6 It should be 
noted that ANN have been repeatedly used in different 
medical fields.7,8 

In the field of cardiology,9 ANN have been successfully 
applied to the diagnosis and treatment of CAD and 
myocardial infarction,10,11,12 electrocardiogram (ECG) 
interpretation, the detection of arrhythmias13 and especially 
in the analysis of ECG images.14 Many studies have 
reported positive results for the detection of myocardial 
infarction from 12-lead ECG (with better accuracy than 
an expert cardiologist),15 the early diagnosis of myocardial 
infarction, and the prediction of infarct size in patients 
with chest pain.16 

Given the importance of preventing myocardial infarction 
and because of the lack of studies designed to test methods 
of prediction, this study aimed to compare the ability of two 
ANN-based approaches to predict myocardial infarction 
within 2 weeks in patients with chest pain.

MATERIALS AND METHODS

Study sample

Our study sample consisted of all 964 patients with chest 
pain referred to Fateme Alzahra Hospital between October 
2011 and April 2012 with nondiagnostic ECG at the time 
of referral who met the following criteria:

•	 Absence of a history of myocardial infarction, 

•	 Absence of bundle branch block, Wolf-Parkinson-White 
abnormality, ventricular hypertrophy or previous ECG 
signs of myocardial infarction, 

•	 Absence of a history of percutaneous coronary surgery 
or coronary artery bypass grafting,

•	 Absence of ECG abnormalities attributable to drugs 
such as digoxin or tricyclic antidepressants.

The ECGs were recorded with Cardiax (SOT Sonotechnik, 
Maria Rain, Austria) setup interfaced to a computer. The 
raw ECG signals were analyzed with Cardiax version 3.50 
Beta 4 software, a computer-aided instructional program. 

Heart rate, QRS axis, QRS duration, QT and QTc interval, 
ST segment deviations and T wave amplitude in all of 
the 12 leads were calculated by the software, and were 
considered as input feature vectors within each time frame 
for the ANN. All patients were followed up for 2 weeks 
and separated into two groups based on the occurrence of 
myocardial infarction. Myocardial infarction was defined as 
a typical rise or fall in biomechanical markers of myocardial 
necrosis with at least one of the following:

•	 Ischemic symptoms

•	 Appearance of pathologic Q waves on ECG

•	 Electrocardiographic changes indicative of ischemia (ST 
segment elevation or depression)

•	 Imaging evidence of new loss of viable myocardium or 
new regional wall motion abnormality.

Group 1 included patients who had a myocardial infarction 
within the 2-week follow-up period, and group 2 included 
patients who did not have a myocardial infarction during 
this period. For all patients we recorded clinical information 
including history, physical examination, laboratory tests and 
ECG at the time of presentation. This information was 
used as feature vectors for input in the ANN. In addition, 
anxiety scores calculated with the Hamilton Anxiety Scale 
were recorded. All patients filled the written consent. The 
study protocol was approved by ethics committee of faculty 
of research of Shiraz University of Medical sciences with 
the referral number of: 3106

Electrocardiographic diagnosis

The ECGs were recorded with a Cardiax device interfaced 
with a computer and analyzed with Cardiax software 
version 3.50 Beta 4 software, a computer-aided instructional 
program. Heart rate, QRS axis, QRS duration, QT and QTc 
interval, ST segment deviations and T wave amplitude 
in all 12 leads were calculated by the software, named as 
group 1 and used as inputs in the neural networks. The 
first group (dataset 1) included 82 patients who presented 
with myocardial infarction and 853 patients (dataset 2) for 
whom myocardial infarction was not recorded during a 
3-month follow-up period.

Clinical diagnosis

All of the patients’ data including history, physical 
examination, laboratory tests and ECG findings were used 
as dataset 2 for the ANN. These clinical data were used for 
82 patients who presented with myocardial infarction and 



Kojuri, et al.: MI prediction using artificial neural network

Journal of Cardiovascular Disease Research  Vol 6  ●  Issue 2  ●  Apr-Jun  2015	 53

853 patients who did not have myocardial infarction. The 
form used to record clinical data is shown in Table 1. Anxiety 
scores were calculated with the Hamilton Anxiety Scale.

Description of  the artificial neural network algorithms

Multi-layer perceptron

The ANN classifier used for the multi-layer perceptron 
(MLP) network in this study is a standard feed-forward 
system containing a single hidden layer and a back-
propagation training algorithm Figure 1. Each input 
neuron is connected to a hidden neuron, and all neurons 
subsequently connect to the output neuron. Each input 
neuron receives a numerical input from all input features, 
which are normalized within an interval of 0 to 1. These 
values are then multiplied by the connection weights, which 
represent the relative influences between the neurons 
from the first layer to the next one. These multiplications 
are summed and passed through the network. The most 
common activation function is the sigmoid function, which 
simulates the all-or-none behavior of biological neurons. 
The outputs of the hidden neurons are then multiplied 
by the appropriate connection weights and fed to the last 
decision-maker neuron. The output neuron performs 

identical calculations to produce the final output of the 
network.17 We selected the optimal number of hidden 
neurons that would result in a predictive network with 
maximal sensitivity and specificity.

Radial basis function network model

The radial basis function (RBF) network has a feed-forward 
structure consisting of a single hidden layer containing J 
locally tuned units, which are fully interconnected to an 
output layer containing a decision-maker neuron. It should 
be noted that the hidden neurons are more biased to the 
central data located around the centers. All hidden units 
simultaneously receive the n-dimensional real value input 
vector X as shown in Figure 2.

Radial bias function networks can be used for regression 
and pattern classification tasks. The RBF network has three 
layers in which the first layer consists of receptor neurons 
and the hidden layer usually contains several neurons with 
a Gaussian activation function. In fact, Gaussian neurons 
comprise a set of receptive fields that model the input 
spaces. For Gaussian RBF this sensitivity can be tuned 
by adjusting the spread parameter, where a larger spread 

Table 1: Patient’s clinical data for history, physical examination 
and laboratory tests
Name  Gender   Age
Tel Code
Main presenting symptoms 
Ischemic type (typical) chest pain  □   Atypical chest pain □
Dyspnea  □   Cold sweats  □       Nausea/Vomiting □
Weakness  □     Palpitation  □                    Dizziness/Syncope □
Aborted SCD or Cardiac arrest □                 Other:
Risk factors
Diabetes mellitus □      Hypertension □     Dyslipidemia □
IHD □       Kidney disease □
Peripheral artery disease □       Family history of premature CAD □
Cigarette smoking □
Water pipe smoking □       Opium □            Anxiety score:
Mild anxiety (14-17) □              Moderate Anxiety (18-24) □
Severe anxiety (25-30) □
Family history
Past cardiac history
Physical examination
Blood pressure:    Heart rate:    Pulmonary edema: □
Peripheral edema: □
Laboratory data
Wbc:         Hb:         Plt:         Bun:         Creat:         Na:
K:            FBS:
TG:           Chol:      LDL:       HDL:       CPK-MB:
Echocardiography
LVEF:                             RWMA:
Angiography (If done)
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implies less sensitivity.

The output of a RBF network is described according to 
Eq. (1): 

The main structural difference between RBF and MLP 
networks is the absence of weights in first hidden layer. 
In other words, the hidden-unit outputs are not calculated 
with the weighted-sum mechanism and sigmoid activation. 
One of the fastest and most accurate learning algorithms for 
this network is termed the “fixed center point”, in which 
only the final layer weights are trained.18-20

Evaluation Scheme

To enhance the performance of the MLP network, we used 
a genetic algorithm instead of a gradient descent algorithm. 
Average classification error was calculated for each batch.18 
Diagnostic performance was estimated with ten-fold 
cross-validation in which each round considered 90% of 
the instances as the training sample and the remaining 
10% as the test sample. The place of training and test sets 
were repeated 10 times; each time 10% of the data was 
considered the test sample and the remaining 90% was 
used as the training sample. This process was repeated 10 
times, and each time the entire body of data was permutated 
to merge the dataset. To ensure the results were robust, 
the averafge of these 100 experiments was reported as the 

Table 2: Summary of patients’ demographic data and clinical history
All patients Patients with MI Patients without MI P value

Mean age (years) 57.07 59.5 56.85 0.231
Male 408 (43.63%) 56 (71.79%) 352 (41.07%) 0.0001

Female 527 (56.36%) 22 (28.20%) 505 (58.92%) 0.0001
Typical chest pain 409 (43.74%) 69 (88.46%) 340 (39.67%) 0.0003
Atypical chest pain 526 (56.25%) 9 (11.53%) 517 (60.32%) 0.0003

Dyspnea 513 (54.86%) 30 (38.46%) 483 (56.35%) 0.007
Cold sweats 233 (24.91%) 36 (46.15%) 197 (22.98%) 0.001

Nausea/Vomiting 205 (21.92%) 39 (50%) 165 (19.20%) 0.0002
Weakness 73 (7.80%) 7 (8.97%) 66 (7.70%) 0.119
Dizziness 141 (15.08%) 9 (11.53%) 132 (15.40%) 0.05

Palpitations 133 (14.22%) 3 (3.84%) 130 (15.16%) 0.017
Diabetes mellitus 143 (15.29%) 22 (28.20%) 121 (14.11%) 0.027

Hypertension 373 (39.89%) 33 (42.30%) 340 (39.67%) 0.503
Hyperlipidemia 151 (16.14%) 30 (38.46%) 121 (14.11%) 0.001
Ischemic heart 

disease 163 (17.43%) 20 (25.74%) 143 (16.68%) 0.166

Smoking 281 (30.05%) 39 (50%) 242 (28.23%) 0.0001
Opium use 73 (7.80%) 18 (23.07) 55 (6.41%) 0.008

Family history 81 (8.66%) 15 (19.23%) 66 (7.70%) 0.013
Anxiety score 15.29 15.08 15.31 0.398

Figure 1: Feed forward neural network showing 
unidirectional movement of  the information

Figure 2: Radial basis function neural network
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mean classification rate with standard deviation for all 100 
values. To optimize the network topology, this procedure 
was used for different numbers of neurons and the one 
that performed best was selected as the desired topology. 
The resulting network was able to control the trade-off 
between over-fitting and generalization in both MLP and 
RBF networks.21,22

Statistical Methods

To evaluate the performance of the neural net works, paired 
t-tests were first used to detect significant differences. The 
F-test was then used to identify separable clusters of data 
in the feature space. For each comparison we calculated 
the P value; next, we calculated the confusion matrix for 
each network to assess sensitivity and specificity. These 
values illustrate how well the network balances the trade-
off between sensitivity and specificity factors. In addition, 
positive predictive value (PPV) and negative predictive 
value (NPV) were determined.

RESULTS

Patient characteristics

The incidence of myocardial infarction in patients with 
chest pain and nondiagnostic ECG at presentation was 
8.34%. Table 2,3 summarizes the patients’ demographic 
and clinical data. Mean heart rate was 78.27 bpm and 
mean blood pressure was 130.99/80.45 mm Hg for the 
whole sample of patients; these values were 76.96 bpm 
and 136.28/83.41 mm Hg for group 1, and 78.39 bpm and 
130.51/80.19 mm Hg for group 2.

Improvement in MLP performance with the genetic 
algorithm

To achieve acceptable performance with the MLP network, 
a genetic optimization algorithm is used to explore the 
solution space to avoid being trapped in a local minimum. 
Figures 3 and 4 show the average distance between 

Figure  3: Average distance between individuals, best fit 
and current individuals in an MLP neural network with 

two hidden layers (dataset 1)

Figure 4: Average distance between individuals, best fit 
and current best individuals in the MLP neural network 

with two hidden layers (dataset 2)

Table 3: Laboratory data for patients at presentation

All patients Patients 
with MI

Patients 
without MI P value

White blood cells [cells/
mm3] 8521 10148 8373 0.05

Hemoglobin [g/dL] 13.24 13.86 13.18 0.06
Platelets [cells/mm3] 233387 232731 233447 0.848
Blood urea nitrogen 

[mg/dL] 17.99 17.19 18.07 0.836

Creatinine [mg/dL] 1.09 1.03 1.10 0.080
Sodium [mEq/L] 139.39 139.50 139.38 0.418

Potassium [mEq/L] 4.51 4.06 4.55 0.441
Blood sugar [mg/dL] 123.09 138.21 121.71 5.6
Triglycerides [mg/dL] 147.37 172.37 145.09 5.2
Total cholesterol [mg/

dL] 166.16 189.52 164.03 3.8

LDL [mg/dL] 97.20 118.14 95.30 2.87
HDL [mg/dL] 37.50 36.75 37.57 0.864



Kojuri, et al.: MI prediction using artificial neural network

56 	 Journal of Cardiovascular Disease Research  Vol 6  ●  Issue 2  ●  Apr-Jun  2015

individuals, fitness values and the best candidates for the 
MLP weights obtained with datasets 1 and 2, respectively. 
With dataset 1, the best MLP network comprised two 
hidden layers containing 6 and 11 neurons. Figure 4 shows 
the same process for dataset 2; in this case the best network 
comprised two hidden layers with 33 and 6 neurons.

Diagnostic indicators of  myocardial infarction 
identified with ANN algorithms

Both the RBF and especially the MLP networks successfully 
classified ECG results consistent with the clinical data. The 
RBF network achieved a successful classification rate or 
accuracy (defined as the total number of correct diagnoses 
in patient with and without myocardial infarction divided 
by the total number of patients) of 90.14%, with 97.29% 
sensitivity and 83% specificity for the training phase, and 
80% sensitivity and 85.52% specificity for the test phase 
(Table 4). For the clinical data, the training phase showed 
81.57% sensitivity, 87.56% specificity, 73% PPV and 98% 
NPV and the test phase showed 68.75% sensitivity, 86.47% 
specificity, 72.22% PPV and 84.62% NPV (Table 5). 

The MLP neural network performed even better than 
the RBF network. With the ECG results, sensitivity was 
95.33%, specificity was 99.22%, PPV was 99.66% and NPV 
was 95.1% for the training phase, and these values were 
93.33%, 97.93%, 99.3% and 82.35% respectively for the 
test phase (Table 6). 

With the clinical dataset, the MLP network yielded a 
sensitivity of 88.75%, a specificity of 88.5%, a PPV of 
95.24% and a NPVof 94.32% for the training phase; the 
values for the test phase were 75%, 93.33%, 82% and 100%, 
respectively (Table 7). Figures 5 and 6 show that the MLP 
network outperformed the RBF network with both the 
ECG and clinical data.

We compared the performance of two well-known neural 
networks, MLP and RBF, in predicting acute myocardial 
infarction in patients with chest pain and nondiagnostic 
ECG within 2 weeks after their referral to the hospital. The 
radial basis function (RBF) network has a feed-forward 
structure consisting of a single hidden layer containing J 
locally tuned units, which are fully interconnected to an 
output layer containing a decision-maker neuron. The 

Table 4: Classification rate, sensitivity, specificity, positive predictive 
value and negative predictive value for the RBF neural network with 
dataset 1 (ECG data)

Classification 
rate (%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Training phase 90.14 (± 0.08) 97.29 83 99.62 41.78
Test phase 82.76 80 85.52 97.64 36.36

Table 5: Classification rate, sensitivity, specificity, positive predictive 
value and negative predictive value for the RBF neural network with 
dataset 2 (history, physical examination andlaboratory tests)

Classification 
rate (%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Training phase 84.71(± 0.13) 81.57 87.86 84.82 88.42
Test phase 78 68.75 86.67 72.22 84.62

Table 6: Classification rate, sensitivity, specificity, positive predictive 
value and negative predictive value for the MLP neural network with 
dataset 1 (ECG data)

Classification 
rate (%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Training phase 0.9728 (± 0.04) 95.33 99.22 99.66 95.10
Test phase 95.63 93.33 97.93 99.30 82.35

Table 7: Classification rate, sensitivity, specificity, positive predictive 
value and negative predictive value for the MLP neural network with 
dataset 2 (history, physical examination and laboratory tests)

Classification 
rate (%)

Sensitivity 
(%)

Specificity 
(%) PPV (%) NPV 

(%)
Training phase 88.75 (± 0.13) 88.50 89 95.24 94.32

Test  phase 84.17 75 93.33 82 100
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ANN classifier used for the multi-layer perceptron (MLP) 
network in this study is a standard feed-forward system 
containing a single hidden layer and a back-propagation 
training algorithm. Each input neuron is connected to a 
hidden neuron, and all neurons subsequently connect to 
the output neuron. Each input neuron receives a numerical 
input from all input features, which are normalized within 
an interval of 0 to 1. Classification with MLP faces two 
challenges: first, determining suitable weights to avoid 
being trapped in a local minimum and second, choosing the 
number of layers and the number of neurons within each 
layer. The performance of an MLP network is sensitive to 
its initial weights; this challenge is greater than the correct 
choice of the number of layers and neurons. Regarding 
the ability of the genetic algorithm to control the trade-
off between exploration and exploitation, a population of 

initial weights is expected to be better able to explore the 
search space, and to result in acceptable weights for the 
network. This challenge is also present in the RBF network, 
where the weights of the second layer to the final decision 
neuron must be trained; consequently, the same procedure 
as for the RBF structure was used to find suitable weights 
to enhance the performance of RBF networks. 

According to the universal approximation theorem, an 
MLP is capable of approximating any smooth nonlinear 
input-output mapping to an arbitrary degree of accuracy 
if and only if a sufficient number of hidden layer neurons 
are used. Because the boundary between features in the 
two classes in this study is a flexible hyper-plane, the 
MLP network with one hidden layer is able to estimate 
this hyper-plane with acceptable accuracy. Moreover, it 

Figure 5: Final comparison of  the performance of  MLP and RBF neural networks with ECG data

Figure 6: Final comparison of  the performance of  MLP and RBF neural networks with history, physical examination 
and laboratory test data
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has been shown that MLP networks are able to model 
RBF networks when the two networks are fairly similar 
in complexity; in other words, both benefit from a single 
hidden layer although the number of neurons in this layer 
can be different.23 The main reason for choosing one 
network rather than the other is based on its learning 
performance with a given dataset. Our results showed 
that the MLP network outperformed the RBF network, 
most likely because of the latter’s greater sensitivity to the 
high dimensionality of the input vectors (e.g. clinical data) 
compared to the MLP network.24-26

The ability of the MLP neural network to predict myocardial 
infarction in accordance with clinical data was acceptable, 
and further studies may demonstrate the efficiency of 
this model compared to other models. An ANN may be 
particularly useful when the primary goal is classification 
and regression; it can also be useful when interactions or 
complex nonlinearities exist in the dataset.23,28,29

The differences in outputs between the MLP and RBF 
networks reflect the deviation from a Gaussian distribution 
in both datasets, because our datasets obeyed a non-
Gaussian distribution. Because the RBF network contains 
several Gaussian functions, each characterized by a certain 
mean vector along with a covariance matrix, it is able to 
model every arbitrary distribution. However, if the data 
are distributed in a highly asymmetric way, a large number 
of Gaussian neurons is needed, and this can lead to the 
oversetting dilemma. In other words the RBF network is 
a good local approximator, whereas the MLP network is a 
strong general approximator.30

The generalization properties of a neural network can 
be documented by measuring the distance between 
training and testing error, and by considering the standard 
deviations around the mean values. The closer these two 
values are to each other, the better the generalization can 
be assumed to be in empirical terms. Moreover, good 
generalization ensures that over-fitting has not occurred.31,32

CONCLUSION

The ability to predict myocardial infarction would be a 
breakthrough in the field of cardiology, but to date there is 

no reliable method for this. Our results showed that even the 
presence of more risk factors and higher anxiety scores, and 
recent repeat angina attacks, cannot reliably predict future 
myocardial infarction. This study compared the ability of 
two types of ANN (MLP and RBF) to correctly predict 
myocardial infarction in two groups of patients on the 
basis of clinical data and ECG findings. The MLP network 
outperformed the RBF network in terms of accuracy and 
generalization. As a result, commercial software with a 
user-friendly graphic user interface has been installed at a 
pilot hospital and is being evaluated with ECG and clinical 
data as a tool to predict acute myocardial infarction within 
the subsequent 2 weeks in patients presenting with chest 
pain and no diagnostic ECG. This method could be applied 
to other fields of medical diagnosis by choosing a suitable 
network and the most appropriate clinical data depending 
on the disease or condition of interest. Methods based on 
an ANN may be especially useful when the decision of a 
specialist carries a high degree of uncertainty. 

STUDY LIMITATIONS

One of the limitations of our study was that only 82 of 
our patients had myocardial infarction during the 2-week 
study period. This limited number of MI cases may be 
the reason that ppv of MLP group was pretty high. To 
overcome this problem further multicenter studies with 
larger sample sizes are needed. By the way, data collection 
of our study is going on and we aim to extend our sample 
size in the near future.
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