TO STUDY THE EFFICACY OF COLCHICINE IN REDUCING INSTENT RESTENOSIS IN INDIAN PATIENTS WITH BARE METAL STENTS

Dr. Gautam Singal¹(Corresponding Author), Dr. Munish Sharma² Dr. Neeraj Mahajan³, Dr. Navreet Singh⁴ Dr. Prashant Bharadwaj⁵

Associate Professor Cardiology, Hero DMC Heart Institute, Dayanand Medical College Ludhiana (Punjab)-141001, Email: drgautamsingal@yahoo.com
Orcid id: 0000-0003-4612-9865

MD (Med) DrNB (Cardiology),Command Hospital (Eastern Command)
Chandimandir (Haryana),Email: dr.munishsharma@outlook.com
DNB (Med), DrNB (Cardiology),Director MMM Medical Centre Pvt Ltd
Trikuta Nagar, Jammu,Email: neeraj22k@gmail.com
HOD Cardiology,Army Institute of Cardiothoracic Science, Pune
navreet6626@gmail.com,Orcid id: 0000-0002-3690-2327

Prof Cardiology ,Bharati Vidyapeeth (Deemed to be University) Medical College, Pune Email: prashantbharadwaj@gmail.com

Abstract

1. Background

Various drugs and modalities has been evaluated to address the In-stent restenosis in stents deployed for obstructive coronary artery disease. In this study we evaluated the efficacy of Colchicine in reducing Instent Restenosis in Indian patients with Bare Metal Stents in terms of binary restenosis, target lesion revascularization (TLR) and late lumen loss (LLL).

2. Methods.

The study was conducted at tertiary care hospital over a period of one year. The patients who presented with acute coronary syndrome or chronic stable angina requiring revascularization were included in the study.

3. Results

A total of 41 patients who fulfilled the inclusion criteria were randomized to two groups and followed up with a check CAG at 12 months. Out of 41 patients enrolled, 21 were randomly assigned to receive colchicine (colchicine

group) and 20 to receive placebo (placebo group). The late lumen loss was calculated for each patient by subtracting the MLD at 12 months from after procedure MLD and the mean late lumen loss in the two groups was 0.48 ± 0.60 and 0.55 ± 0.52 mm respectively which was not significant statistically (p=0.67).

4. Conclusion

In our study we found equivocal results in as much the efficacy of colchicine in preventing restenosis in all comers of an Indian population albeit this study confirmed the safety and compliance of colchicine in the study population.

1. Introduction

The use of percutaneous balloon angioplasty to recanalize narrowed coronary arteries and endovascular vessels revolutionized revascularization ⁽¹⁾. Balloon angioplasty (BA), however, was associated with subintimal dissection, abrupt vessel closure, and restenosis. The introduction of a metallic spring into the popliteal artery of an experimental animal by Charles Dotter ⁽²⁾ signaled the beginning of the stent era. However, the first human stent implantation, by Sigwart et al ⁽³⁾, did not occur until 1986. And it was only in 1994 that the US Food and Drug Administration approved the use of stents following two studies ^(4,5) that conclusively proved the superiority of stents over balloon angioplasty with regards to their long-term prognosis. Intracoronary bare metal stents (BMS), which could tackle dissections and eliminate elastic recoil, became the next mode of intervention ⁽⁴⁾ but their use was limited by increased inflammation and increased neointimal hyperplasia, leading to in-stent restenosis (ISR) ^(6,7,8). Drug-eluting stents (DES) are another breakthrough in

stent technology because of their ability to minimize cellular proliferation and to reduce restenosis rates to single-digit levels ^(9,10) and have become the interventional treatment of coronary atherosclerotic disease ⁽¹¹⁾. However, the demonstrated efficacy of DES is balanced by the small but unpredictable risk of very late stent thrombosis thought to be due to delayed vascular healing resulting from either the initial antiproliferative effect (and associated late acquired incomplete stent apposition) or a hypersensitivity reaction to the drug, polymer coating, or their combination ^(12,13). Restenosis is also reported with DES, especially in complex subsets of patients and lesions ⁽¹⁴⁾.

In-stent restenosis occurs in up to one-half of patients treated with BMS (15). Although it was initially considered to be a benign process, but later on the evidence showed that it presented with acute myocardial infarction or unstable angina in more than one-third of cases (16). In addition, there is evidence that instent restenosis has a negative impact on the long-term survival of patients treated with BMS (17). It has been estimated that about 60% of restenotic lesions require treatment with a repeat revascularization procedure (15), and this highlights the importance of finding effective preventive and therapeutic solutions for in-stent restenosis. Several treatment modalities have been proposed and used for bare-metal in-stent restenosis: plain/cutting BA, repeat stenting, vascular brachytherapy, rotational directional atherectomy and excimer laser-based angioplasty (18). Previously plain BA with or without brachytherapy had been the most frequently used treatment for patients with in-stent restenosis but now a number of studies (19) showed superiority of DES over conventional treatment modalities for restenosis in BMS in terms of larger post-procedural lumen volume as well as a significant reduction in the volume of neointimal proliferation with DES than with plain BA at follow-up angiography

(23). However, they require dual antiplatelet therapy (DAPT) thereby increasing the risk of bleeding in high risk surgeries (20). Hence, there is a considerable impetus for the development of new therapies to reduce the rate of restenosis after coronary stenting, especially with bare metal stents. Although coronary stenting has reduced the rates of angiographic and clinical restenosis caused by acute vessel recoil and chronic vessel remodeling, inflammation and neo-intimal proliferation continue to be associated with the pathophysiology of ISR (21). Prevention of this neo-intimal proliferation with various immunosuppressive and anti-smooth muscle cell proliferation drugs (e.g.: Prednisolone, Rapamycin, and Sirolimus) has been hypothesized and demonstrated to reduce ISR (22).

Colchicine is a potent anti-inflammatory drug which inhibits the mitotic spindle by disrupting the self-assembly of microtubules in neutrophils, macrophages and smooth muscle cells ⁽²³⁾. Moreover, it shows a preferential concentration in leucocytes more than 16 times the peak concentration in plasma, thereby decreasing the systemic detrimental effects of the drug ⁽²⁴⁾.

In this study we evaluated the efficacy of Colchicine in reducing Instent Restenosis in Indian patients with Bare Metal Stents in terms of binary restenosis, target lesion revascularization (TLR) and late lumen loss (LLL).

3. Aims and Objectives:

To study the Efficacy of Colchicine in reducing Instent Restenosis in Indian patients with Bare Metal Stents in terms of binary restenosis, target lesion revascularization (TLR) and late lumen loss (LLL) by Coronary Angiography at 12 months.

4. Materials and Methods.

The study was conducted at tertiary care hospital from April 2015 to May 2016. The patients who presented with acute coronary syndrome or chronic stable angina requiring revascularization were included in the study.

Inclusion criteria

- Age >18 years
- Clinical evidence of stable or unstable angina or abnormal functional study
- CAD patients requiring PCI but having contraindications to DES deployment (e.g. planned necessary surgery within 1 year).
- Those who need anticoagulation treatment, in whom triple antithrombotic therapy (double antiplatelet and 1 anticoagulant) is associated with a high risk of bleeding and should be as short term as possible
- Patients with disorders who may require discontinuation of DAPT within
 1 year

Only 1 lesion per patient was included in the study. (If PCI was performed in > 1 coronary site in a patient, the site with the greater artery diameter was included).

Baseline clinical characteristics studied were age, sex, the presence of acute coronary syndrome (ACS), diabetes mellitus (DM), smoking, hyperlipidemia and hypertension.

Exclusion criteria

- An acute myocardial infarction within the previous 48 hours
- Severe renal insufficiency (GFR <30mL/min)
- Known hypersensitivity or contraindication to the required medication
- Malignancies causing life expectancy of < 2 years
- Angiographic exclusion criteria consisting of
 - Vessel diameters of <2.5 mm</p>
 - Unprotected left main stenosis
 - Stents covering a major side branch (> 2 mm)

A total of 41 who patients fulfilled the inclusion and exclusion criteria and were enrolled in the study. Patients underwent baseline coronary angiography and PCI with a BMS. All stents were post-dilated with an appropriately sized noncompliant balloon. The patients were then randomized to the two arms of the study wherein the control group was given placebo by and the study group was given Colchicine 0.5mg BD. The study was designed as a prospective randomized single-blind study, and the patients were blinded to the treatment assignment during the study. Procedural success was assessed by the performance characteristics in terms of tracking ability, deliverability and acute luminal gain on QCA. All patients were prescribed the standard doses of dual antiplatelet therapy (DAPT) with aspirin 150 mg once a day and Clopidogrel 75 mg bid for one year. Late lumen loss and any ISR (the difference between the insegment minimal lumen diameter after the procedure and at 12 months, as evaluated by quantitative coronary angiography) was the primary end point. Secondary end points included the rate of restenosis and the rate of the combined clinical events up to 12 months, including stent thrombosis, targetlesion revascularization, myocardial infarction, and death. A written informed consent was obtained from all patients before randomization.

Statistical Methods

Continuous variables were expressed as mean \pm SD. Values were reported as numbers with relative percentage or SD. For continuous data, groups were compared with a parametric Student t test or a Fischer exact t test according to the distribution of the data. Categorical variables were compared with a chi-square test. A p value of <0.05 was considered statistically significant. The SPSS statistical software (version 20.0, SPSS, Inc., Chicago, Illinois) was used for all statistical calculations.

5. Results

A total of 41 patients who fulfilled the inclusion criteria were enrolled in the study and followed up with a check CAG at 12 months. Out of 41 patients enrolled, 21 were randomly assigned to receive colchicine (colchicine group) and 20 to receive placebo (placebo group). 16(39.02%) patients out of 41 had LAD as affected artery, 20 (48.78%) had RCA and 5(12.19%) had LCX as affected artery. The mean % diameter stenosis in the coronaries in the colchicine group was 85.19±11.17% with a minimal lumen diameter of 0.43±0.32mm before 10.71±6.67 2.74±0.36 immediately procedure and and mm after revascularisation respectively. Whereas the mean % diameter stenosis and MLD in the placebo group was 83.00±12.18% and 0.47±0.36 mm before procedure and 11.55±6.59% and MLD increased to 2.58±0.44mm. There was statistically no significant difference between colchicine and placebo treatment groups in

the immediate post procedure outcome in terms of minimal lumen diameter (p=0.22). Follow up CAG at 12 months revealed a mean MLD of 2.26±0.64 mm in colchicine treated patients and 2.00±0.57 mm in patients who were given placebo (p=0.189). The late lumen loss was calculated for each patient by subtracting the MLD at 12 months from after procedure MLD and the mean late lumen loss in the two groups was 0.48±0.60 and 0.55±0.52 mm respectively which was not significant statistically (p=0.67). MACE was 19.04% in colchicine group and 20% in placebo group (p= 1.00) that was all due to the need for TLR. 4 patients in colchicine group and 4 patients in placebo group developed significant restenosis needing revascularization.

Adverse Effects

Adverse effects occurred more commonly in colchicine group than in the placebo group. Gastrointestinal symptoms (diarrhea and nausea) were the most common adverse events in the colchicine group. None of the patients in the colchicine group had bleeding. Myalgias and muscle cramps comprised second most frequent side effects. None of the patients had hepatic or nephro-toxicity or rash in the colchicine group. Whereas dyspepsia, nausea and gastric irritation was the most commonly reported complaints in the placebo group.

ISSN: 0975-3583, 0976-2833 | | VOL 14, ISSUE 12, 2023

7. Conclusion

a) In our study we found equivocal results in as much the efficacy of

colchicine in preventing restenosis in all comers of an Indian population

albeit this study confirmed the safety and compliance of colchicine in the

study population.

b) Although the restenosis rate of 19.04% seen in our study suggests a lack of

efficacy, since only cut off values of >50% stenosis were used. But a smaller

beneficial effect may be present as since the average late lumen loss was

less in the colchicine group.

We recommend that a multicenter study should be conducted with a larger

sample size and diabetic patients.

Tables and Charts

Fig. 1: Treatment Assigned

4150

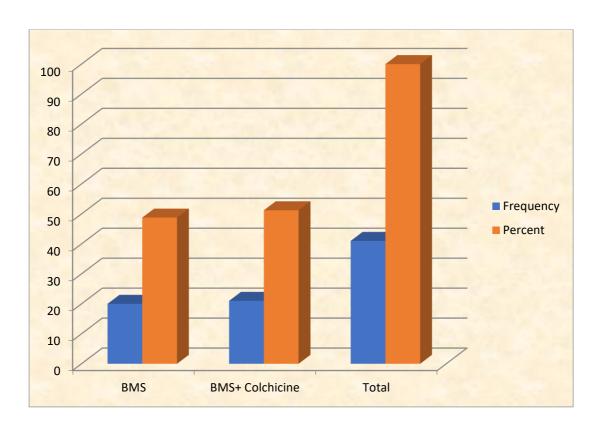


Table 1: Distribution of patients according to the treatment assigned

Treatment assigned	Frequency	Percent
BMS	20	48.78
BMS+ Colchicine	21	51.22
Total	41	100

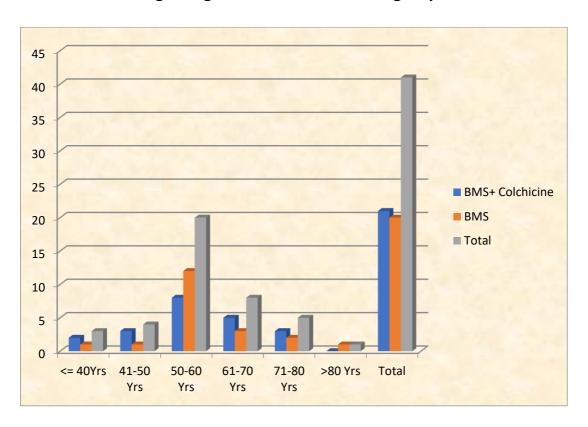


Fig. 2: Age wise distribution in 2 groups

Table 2: Age wise distribution of patients in 2 study groups

	Study	groups		Pearson	
Age group	BMS+ Colchicine	BMS	Total	Chi-Square	p-value
<= 40Yrs	2	1	3		0.577
41-50 Yrs	3	1	4		
50-60 Yrs	8	12	20		
61-70 Yrs	5	3	8	3.811	
71-80 Yrs	3	2	5		
>80 Yrs	0	1	1		
Total	21	20	41		

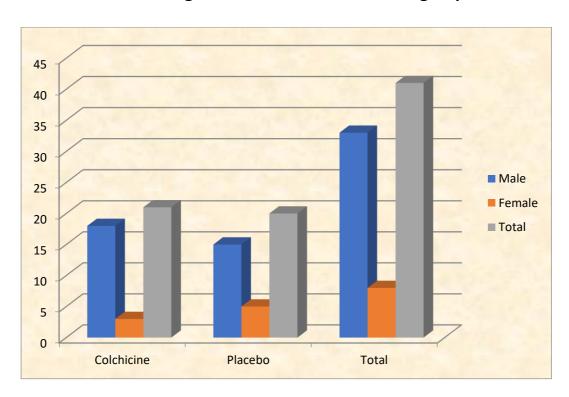


Fig. 3: Sex wise distribution in 2 groups

Table 3: Sex wise distribution of patients in two study groups

	Study Group			p-value
Sex	Colchicine	Placebo	Total	(Fisher's Exact Test)
Male	18	15	33	
Female	3	5	8	0.454
Total	21	20	41	

Fig. 4: LV function in 2 groups

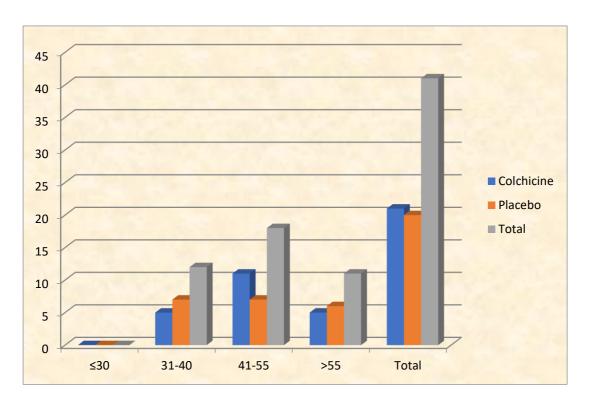


Table 4: Distribution of patients according to the LV function in 2 groups

LVEF	Study	Total		
EVE	Colchicine	Placebo	· otai	
≤30	0	0	0	
31-40	5	7	12	
41-55	11	7	18	
>55	5	6	11	
Total	21	20	41	

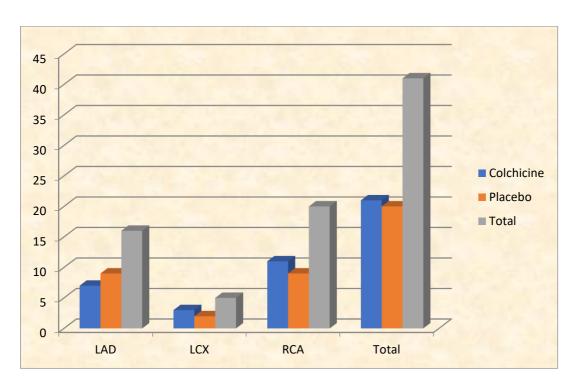


Fig. 5: Affected coronaries in 2 groups

Table 5: Affected coronary in 2 study groups

Affected	Study	Group	Total	Pearson		p-value
Coronary	Colchicine	Placebo	Total	Chi-Square		
LAD	7	9	16		0.73	
LCX	3	2	5	0.626		
RCA	11	9	20	0.020		
Total	21	20	41			

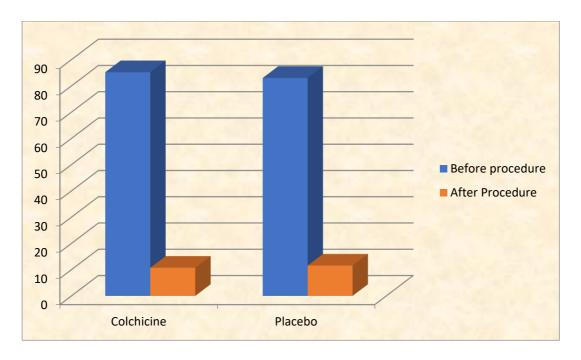


Fig. 6a: % Diameter Stenosis

Fig.6b: Minimal Lumen Diameter (MLD)

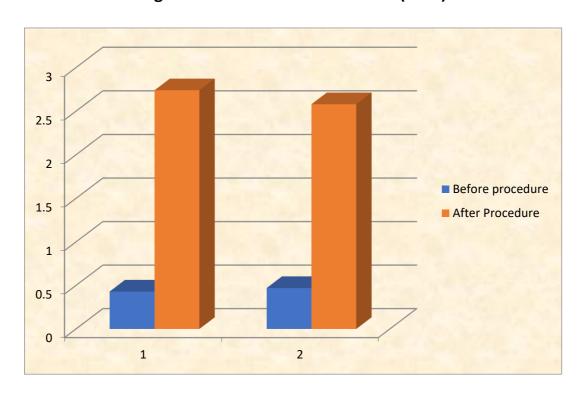


Table 6: Angiographic Data before and after procedure (mean ± sd)

	% Dia	% Diameter stenosis			lumen diam ILD) (mm)	eter
	Colchicine	Placebo value		Colchicine	Placebo	p value
Before procedure	85.19±11.17	83.00±12.18	0.55	0.43±0.32	0.47±0.36	0.65
After Procedure	10.71±6.67	11.55±6.59	0.68	2.74±0.36	2.58±0.44	0.22

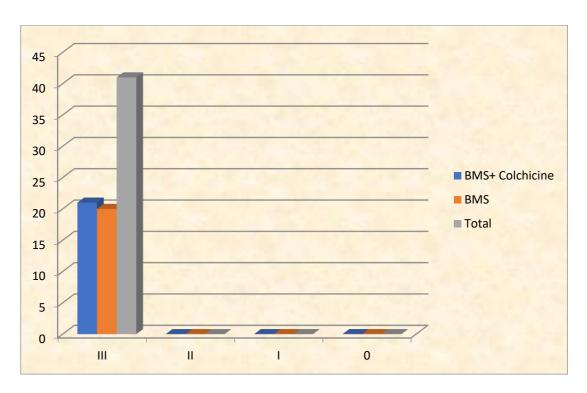


Fig. 7: TIMI Flow

Table 7: Procedural success (in terms of TIMI flow) after revascularization in 2 study groups

	Study	/ Group	Total	
TIMI flow	BMS+ Colchicine	BMS		
III	21	20	41	
II	0	0	0	
I	0	0	0	
0	0	0	0	
Total	21	20	41	

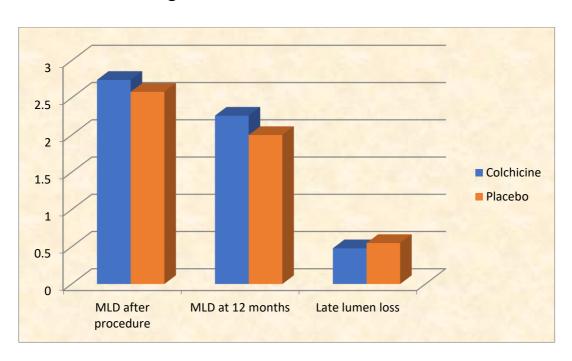


Fig. 8: Late lumen loss at 12 months

Table 8: Results of check CAG at 12 months in 2 study groups (mean±sd)

	Colchicine	Placebo	p value
MLD after procedure	2.74±0.36	2.58±0.44	0.22
MLD at 12 months	2.26±0.64	2.00±0.57	0.189
Late lumen loss	0.48±0.60	0.55±0.52	0.67

Fig. 9: MACE

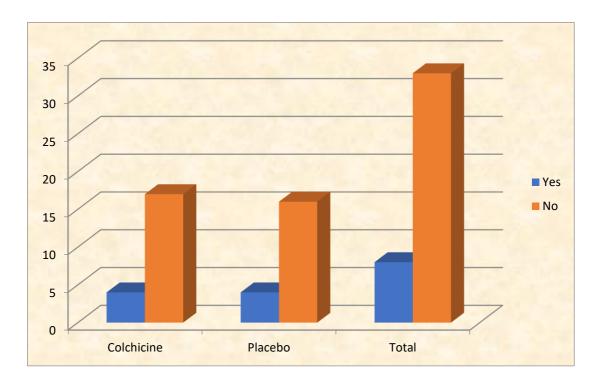


Table 9: Incidence of MACE in 2 groups

MACE	Colchicine	Placebo	Total	p-value (Fisher's Exact Test)
Yes	4	4	8	
No	17	16	33	1.000
Total	21	20	41	

References

- 1. Gruentzig A. Results from coronary angioplasty and implications for the future. Am Heart J. 1982 Apr; 103(4 Pt 2):779-83.
- 2. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation. 1964 Nov; 30:654-70.
- 3. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular

- stents to prevent occlusion and restenosis after transluminal angioplasty.

 N Engl J Med. 1987 Mar 19; 316(12):701-6.
- 4. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994 Aug 25; 331(8):496-501.
- 5. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994; 331:489–95.
- 6. Hoffmann R, Mintz GS, Dussaillant GR, Popma JJ, Pichard AD, Satler LF, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation. 1996 Sep 15; 94(6):1247-54.
- 7. Brower V. Stents and biology combination for restenosis. Nat Biotechnol. 1996 Apr; 14(4):422.
- 8. Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R. Morphological predictors of restenosis after coronary stenting in humans. Circulation. 2002 Jun 25; 105(25):2974-80.
- Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, et al; SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003 Oct 2; 349(14):1315-23.
- 10.Stone GW, Ellis SG, Cannon L, Mann JT, Greenberg JD, Spriggs D, et al; TAXUS V Investigators. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery

- disease: a randomized controlled trial. JAMA. 2005 Sep 14; 294(10):1215-23.
- 11. Kirtane AJ, Gupta A, Iyengar S, Moses JW, Leon MB, Applegate R, et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009 Jun 30; 119(25):3198-206.
- 12.Nakazawa G, Vorpahl M, Finn AV, Narula J, Virmani R. One step forward and two steps back with drug-eluting-stents: from preventing restensis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc Imaging. 2009 May; 2(5):625-8.
- 13.Finn AV, Nakazawa G, Joner M, Kolodgie FD, Mont EK, Gold HK, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007 Jul; 27(7):1500-10.
- 14. Stone GW, Moses JW, Ellis SG, Schofer J, Dawkins KD, Morice MC, et al. Safety and efficacy of sirolimus and paclitaxel-eluting coronary stents. N Engl J Med. 2007 Mar 8; 356(10):998-1008.
- 15. Hoffmann R, Mintz GS. Coronary in-stent restenosis predictors, treatment and prevention. Eur Heart J. 2000 Nov;21(21):1739-49.
- 16.Chen MS, John JM, Chew DP, Lee DS, Ellis SG, Bhatt DL. Bare metal stent restenosis is not a benign clinical entity. Am Heart J. 2006 Jun; 151(6):1260-4.
- 17. Schuhlen H, Kastrati A, Mehilli J, Hausleiter J, Pache J, Dirschinger J, et al. Restenosis detected by routine angiographic follow-up and late mortality after coronary stent placement. Am Heart J. 2004; 147:317–22.

- 18.Smith SC Jr, Feldman TE, Hirshfeld JW Jr, Jacobs AK, Kern MJ, King SB 3rd, et al. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update 2001 Guidelines for Percutaneous Coronary Intervention) Circulation. 2006; 113:e166–e286.
- 19.Iofina E, Radke PW, Skurzewski P, Haager PK, Blindt R, Koch KC, et al. Superiority of sirolimus eluting stent compared with intracoronary β radiation for treatment of in-stent restenosis: a matched comparison. Heart. 2005; 91(12):1584-9.
- 20. Hwang CW, Wu D, Edelman ER. Physiological transport forces govern drug distribution for stent-based delivery. Circulation. 2001 Jul 31; 104(5):600-5.
- 21.Iofina E, Langenberg R, Blindt R, Kühl H, Kelm M, Hoffmann R. Polymer-based paclitaxel-eluting stents are superior to nonpolymer-based paclitaxel-eluting stents in the treatment of de novo coronary lesions. Am J Cardiol. 2006 Oct 15; 98(8):1022-7.
- 22. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006 Jul 4; 48(1):193-202.
- 23. Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004 Feb 17; 109(6):701-5.

Journal of Cardiovascular Disease Research

ISSN: 0975-3583, 0976-2833 || VOL 14, ISSUE 12, 2023

24.Babapulle MN, Eisenberg MJ. Coated stents for the prevention of restenosis: Part I. Circulation. 2002 Nov 19; 106(21):2734-40.