E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


A hybrid clustering and classification model for chemical code based medical disease prediction

Konda sreenu, Dr B.Raja Srinivasa reddy.

Abstract
As the number of biomedical documents sets and medical datasets are increasing in size and dimensions, finding
an essential key ICD based disease terms are difficultto extract in large training databases. Most of the
traditional approaches use static ICD code extraction for the medical disease classification process. In this paper,
a hybrid ICD-Disease clustering-based classification approach is designed and implemented on the large
databases. In this work, a hybrid graph-based clustering algorithm is implemented in order to optimize the data
clustering operation for the classification problem. Finally, a weighted neural network is applied on the clustered
features for classification process. Experimental results show that the present model has high computational
efficiency than the conventional models

Key words: neural network, clustering, classification, medical datasets


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Konda sreenu
Articles by Dr B.Raja Srinivasa reddy
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Konda sreenu, Dr B.Raja Srinivasa reddy. A hybrid clustering and classification model for chemical code based medical disease prediction. J Cardiovasc. Dis. Res.. 2021; 12(5): 794-801. doi:10.31838/jcdr.2021.12.05.109


Web Style

Konda sreenu, Dr B.Raja Srinivasa reddy. A hybrid clustering and classification model for chemical code based medical disease prediction. http://www.jcdronline.org/?mno=120098 [Access: September 04, 2021]. doi:10.31838/jcdr.2021.12.05.109


AMA (American Medical Association) Style

Konda sreenu, Dr B.Raja Srinivasa reddy. A hybrid clustering and classification model for chemical code based medical disease prediction. J Cardiovasc. Dis. Res.. 2021; 12(5): 794-801. doi:10.31838/jcdr.2021.12.05.109



Vancouver/ICMJE Style

Konda sreenu, Dr B.Raja Srinivasa reddy. A hybrid clustering and classification model for chemical code based medical disease prediction. J Cardiovasc. Dis. Res.. (2021), [cited September 04, 2021]; 12(5): 794-801. doi:10.31838/jcdr.2021.12.05.109



Harvard Style

Konda sreenu, Dr B.Raja Srinivasa reddy (2021) A hybrid clustering and classification model for chemical code based medical disease prediction. J Cardiovasc. Dis. Res., 12 (5), 794-801. doi:10.31838/jcdr.2021.12.05.109



Turabian Style

Konda sreenu, Dr B.Raja Srinivasa reddy. 2021. A hybrid clustering and classification model for chemical code based medical disease prediction. Journal of Cardiovascular Disease Research, 12 (5), 794-801. doi:10.31838/jcdr.2021.12.05.109



Chicago Style

Konda sreenu, Dr B.Raja Srinivasa reddy. "A hybrid clustering and classification model for chemical code based medical disease prediction." Journal of Cardiovascular Disease Research 12 (2021), 794-801. doi:10.31838/jcdr.2021.12.05.109



MLA (The Modern Language Association) Style

Konda sreenu, Dr B.Raja Srinivasa reddy. "A hybrid clustering and classification model for chemical code based medical disease prediction." Journal of Cardiovascular Disease Research 12.5 (2021), 794-801. Print. doi:10.31838/jcdr.2021.12.05.109



APA (American Psychological Association) Style

Konda sreenu, Dr B.Raja Srinivasa reddy (2021) A hybrid clustering and classification model for chemical code based medical disease prediction. Journal of Cardiovascular Disease Research, 12 (5), 794-801. doi:10.31838/jcdr.2021.12.05.109





Most Viewed Articles
  • Effects of right ventricular septal versus apical pacing on plasma natriuretic peptide levels
    nikoo M.H, ghaedian m. m., kafi M., fakhrpour A., Jorat M. V., Pakfetrat M., Ostovan M., Zahra Emkanjoo
    J Cardiovasc. Dis. Res.. 2011; 2(2): 104-109
    » Abstract » doi: 10.4103/0975-3583.83036

  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles