E-ISSN 0976-2833 | ISSN 0975-3583
 

Research Article 


Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar.

Abstract
Objective: This studyaimed to identify clinical parameters which are highly influencing with Fatty Liver Index (FLI), lipid accumulation product (LAP), hepatic steatosis index (HSI),NAFLD liver fat score (NAFLD-LFS),Triglyceride and Glucose index(TYG).

Materials and Methods: This was a prospective observational study conducted in 128 patients aged between >18-80 years who attended SRM medical hospital and research center during July -Dec 2020. Based on inclusion and exclusion criteria, inultrasound diagnosed NAFLD patients the lab values are collected. These collected lab values are correlated with FLI, LAP, HSI, NAFLD-LFS, TYG according to cut-off values.

Results:This analysis shown a strong negative correlation found between FLI <30, FPG (P=0.044). Moderate positive correlations were found between FLI 30-<60 and BMI (P=0.010), WC (P=0.003). In the case of FLI >60, there is a moderate positive correlation found between FLI and weight (P<0.0001), BMI (<0.0001), WC (<0.0001), and weak positive correlation with TG (P=0.007), GGT (P=0.033). LAP<80 shown a strong positive correlation with TG (P<0.0001), a weak positive correlation with HOMA-IR (P= 0.045), and a weak negative correlation with Ht (P=0.011). LAP >80 shown a strong positive correlation with TG (P<0.0001). HSI <36 shown a moderate positive correlation in BMI (P=0.028). HSI >36 shown a moderate positive correlation in Wt (P<0.0001), WC (P<0.0001), fasting insulin (P=0.002), and a strong positive correlation with BMI (P<0.0001). NAFLD-LFS <-0.640 shown a weak positive correlation in fasting insulin (P=0.0407). NAFLD-LFS >-0.640 shown a strong positive correlation in AST (P<0.0001), moderate positive correlation with ALT (P<0.0001), fasting insulin (P<0.0001), and weak positive correlation with HOMA-IR (P=0.001). TYG >4.49 shown strong positive correlations in FPG (<0.0001), TG (P<0.0001), weak positive correlation with HOMA-IR (P=0.049).TYG >4.49 shown a weak negative correlation with BMI (P=0.007).
Conclusion:Other than variables derived to calculateFatty Liver Index (FLI), lipid accumulation product (LAP), hepatic steatosis index (HSI),NAFLD liver fat score (NAFLD-LFS),Triglyceride and Glucose index(TYG);FPG, insulin resistance, fasting insulin found to have a significant correlation.

Key words: Fatty Liver Index (FLI), lipid accumulation product (LAP), hepatic steatosis index (HSI),NAFLD liver fat score (NAFLD-LFS), Triglyceride and Glucose index(TYG).


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Ravula Sahithya Ravali
Articles by Karunanidhi Santhana Lakshmi
Articles by Thangavel Mahalingam Vijayakumar
Articles by JanardananSubramonia Kumar
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. J Cardiovasc. Dis. Res.. 2021; 12(4): 248-256. doi: 10.31838/jcdr.2021.12.04.30


Web Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. http://www.jcdronline.org/?mno=92280 [Access: July 26, 2021]. doi: 10.31838/jcdr.2021.12.04.30


AMA (American Medical Association) Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. J Cardiovasc. Dis. Res.. 2021; 12(4): 248-256. doi: 10.31838/jcdr.2021.12.04.30



Vancouver/ICMJE Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. J Cardiovasc. Dis. Res.. (2021), [cited July 26, 2021]; 12(4): 248-256. doi: 10.31838/jcdr.2021.12.04.30



Harvard Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar (2021) Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. J Cardiovasc. Dis. Res., 12 (4), 248-256. doi: 10.31838/jcdr.2021.12.04.30



Turabian Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. 2021. Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. Journal of Cardiovascular Disease Research, 12 (4), 248-256. doi: 10.31838/jcdr.2021.12.04.30



Chicago Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. "Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease." Journal of Cardiovascular Disease Research 12 (2021), 248-256. doi: 10.31838/jcdr.2021.12.04.30



MLA (The Modern Language Association) Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar. "Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease." Journal of Cardiovascular Disease Research 12.4 (2021), 248-256. Print. doi: 10.31838/jcdr.2021.12.04.30



APA (American Psychological Association) Style

Ravula Sahithya Ravali, Karunanidhi Santhana Lakshmi, Thangavel Mahalingam Vijayakumar,JanardananSubramonia Kumar (2021) Factors Influencing Online Prediction Tools of Non-Alcoholic Fatty Liver Disease. Journal of Cardiovascular Disease Research, 12 (4), 248-256. doi: 10.31838/jcdr.2021.12.04.30





Most Viewed Articles
  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles