Journal of Cardiovascular Disease Research
The Role of Artificial Intelligence in Accurate Disease Detection from Chest X-rays
Salandri Abhishek Yadav, Divya Athapuram, K. Phalguna Rao
JCDR. 2022: 1195-1205
Abstract
COVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 hours. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called DeepCovidNet for early COVID-19 detection using convolutional neural Networks model. DeepCovidNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. Finally, the simulations revealed that the proposed DeepCovidNet resulted in superior performance as compared to existing models.
» PDF